Atmosphere Monitoring – Assessing functional limits of detection

Alan Chapman SAMAP 2019 4th – 6th November 2019

Contents

- Methods of determining lower operating limits of measuring systems
- Direct reading toxic gas monitors lower limit of measurement
- Limits of detection and quantification for laboratory techniques
- Coverage factors
- A practical example of these techniques
- Conclusions

QINETIQ

Methods for determining lower operating limits of measuring systems

- Generally in Europe, direct reading toxic gas monitors are validated EN 45544:2015
 - This defines Lower Limit of Measurement (U_{zero}) = 'smallest value of the measured quantity within the measuring range'
- Laboratories performing retrospective analysis are typically working to in-house validation procedure
 - Typically based on Eurachem guide 'The Fitness for Purpose of Analytical Methods' second edition which defines
 - The Limit of Detection (LoD) = lowest level of an analyte that can be detected, with sufficient confidence, within the sample matrix
 - The Limit of Quantification (LoQ) = lowest level of an analyte that can be quantified, with sufficient confidence, within the sample matrix

Calculation of U_{zero} According to EN 45544:2015

•
$$ur_{zero} = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \bar{x})}{n-1}}$$

•
$$unr_{zero} = \sqrt{\left(\frac{\bar{x}}{\sqrt{3}}\right)^2 + \left(\frac{x_{res}}{2 \times \sqrt{3}}\right)^2}$$

•
$$u_{zero} = \sqrt{(ur_{zero}^2 + unr_{zero}^2)}$$

•
$$U_{zero} = 2 \times u_{zero}$$

Commercial in confidence

Where:

 ur_{zero} = Random element of zero uncertainty x_i = Zero measurement \bar{x} = Mean of repeated zero measurements unr_{zero} = Non – random element of zero uncertainty x_{res} = Resolution of the indicating device u_{zero} = Total zero uncertainty U_{zero} = Lower limit of measurement

Calculation of s_0 and s_0 ' according the Eurachem guide

•
$$s_0 = \sqrt{\sum_{i=1}^{m} \frac{(z_i - \bar{z})}{m - 1}}$$

when readings are not blank corrected

•
$$s_0' = \frac{s_0}{\sqrt{r}}$$

• or when readings are blank corrected

•
$$s_0' = \frac{s_0}{\sqrt{\frac{1}{r} + \frac{1}{r_b}}}$$

- For a direct reading instrument this simplifies to
- $s_0' = \frac{s_0}{\sqrt{1}} = s_0$
- LoD = $3 \times s_0^{\circ}$ and LoQ = $10 \times s_0^{\circ}$

Commercial in confidence

Where:

- s_0 = Estimated standard deviation of a reading
 - at or near zero concentration
- z_i = Near zero measurements
- \bar{z} = Mean of the repeated near zero measurement
- m = Number of readings taken
- r = Number of replicate readings averaged to produce a final result
- r_b = Number of blank replicate readings averaged to produce a final result
- s_0' = Standard deviation used for calculating LoD and LoQ

QINETIQ

Comparison of U_{zero} and s_0'

•
$$ur_{zero} = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \bar{x})}{n-1}}$$
, and $s_0' = \sqrt{\sum_{i=1}^{m} \frac{(z_i - \bar{x})}{m-1}}$

- are interchangeable and calculate the random element of the uncertainty

- urzero is calculated on zero readings
- s_0' can be calculated on zero or near zero readings
- unr_{zero} addresses non-random uncertainty
- EN 45544:2015 uses a smaller coverage factor than Eurachem method
 - U_{zero} is 2
 - LoD is 3
 - LoQ is 10

Selection of coverage factors

- EN 45544:2015 does not explain how the coverage factor for U_{zero} value was derived
- Eurachem Guide explains that the LoD coverage factor
 - Is based on the 95 % confidence interval
 - The 95 % interval for avoiding false positive readings is 1.65.
 - The 95 % interval for avoiding false negative readings is 1.65
 - Therefore the total coverage factor 3.3
 - This is normally rounded down to 3 for the LoD.
- The smaller coverage factor in EN 45544:2015 means there is a lower certainly that false positive or negative readings are avoided.

Instrument evaluation example

Nitric oxide determination on an FTIR

QINETIQ

Standard deviation vs concentration

- s₀' vs concentration shows the variance due to the limited number of samples
- The FTIR does not allow the reporting of negative values
- Marked decrease in standard deviation at concentrations < 1 ppm due to false zero readings
- In reagent free gases it is not possible to assess these false zero results.

QINETIQ

Calculated lower operating limits

Challenge gas composition	s₀ (ppm)	U _{zero} (ppm)	LoD (ppm)	LoQ (ppm)
N ₂	0.00	0.00	0.00	0.00
1 ppm NO in N ₂	0.09	N/A	0.27	0.90
1 ppm NO, 50 % RH in N ₂	0.22	N/A	0.66	2.20
1 ppm NO & 0.5 % CO ₂ in 50 % RH N ₂	0.13	N/A	0.39	1.30
2 ppm NO, 0.5 % $\rm CO_2$ & 25 ppm R134a in 50 % RH N $_2$	0.08	N/A	0.24	0.80

- $unr_{zero} = 0.00$
 - Possibly due to processing of negative readings
- NO concentrations selected to avoided false negatives
- High variance in the humidified N₂
 - Observed in all H₂O co-contaminant tests

Conclusions

- Understanding the method the instrument processes negative readings is important
- EN 45544:2015 does not address any matrix effects in setting the Lower Limit of Measurement
- Smaller confidence interval in EN45544:2015 give less certainty that false positive and negative readings are avoided.
- Overall this causes EN45544 to have a Lower Limit of Measurement is not achieved in real world applications.

Acknowledgements

UK MOD atmosphere control stakeholders

Chemistry (Atmospheres) Team

This work was undertaken as part of the Maritime Strategic Capability Agreement between the Naval Authority Group and QinetiQ

