

Novel Approaches for the Investigation of Submarine Air Quality

A.V. Qualley¹, B Vaught², L.A. Beardslee², D.M. Fothergill² & <u>H.M. Rubenstein³</u>

¹UES, Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHMO, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, USA

²United States Navy Naval Submarine Medical Research Laboratory, Naval Submarine Base, Bldg. 141, Trout Ave, Groton, CT 06349, USA

³United States Air Force 711th Wing – Air Force Research Laboratory, 711th Human Performance Wing/RHMO, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, USA

Submarine Air Monitoring and Purification Symposium November 2019

Disclaimer

- The views expressed are those of the authors and do not necessarily reflect the official policy or position of the U.S. Air Force, the U.S. Navy, the Department of Defense, or the U.S. Government.
- I am a military service member (or employee of the U.S. Government). This work was prepared as part of my
 official duties. Title 17 U.S.C. §105 provides that 'Copyright protection under this title is not available for any
 work of the United States Government.' Title 17 U.S.C. §101 defines a U.S. Government work as a work
 prepared by a military service member or employee of the U.S. Government as part of that person's official
 duties.
- All graphics/tables/images were produced by the authors unless otherwise stated.

Overview

1. Problem Statement:

- Chemically diverse sample has special needs
- > Current sampling methods are costly and inefficient

2. Advancement Opportunities

- Evaluation of two new passive sampling devices
- > SIFT-MS with automated, online thermal extraction

3. Pilot Field Study

- Dosimeters stationed onboard submarine at multiple fixed locations
- Samplers worn by crew member for comparison

Diverse Analyte Classes Are A Challenge for Analysis

		Vapor	
		Pressure	
Chemical	BP	(mm)	LogK _{ow}
 Monoethanolamine	170°C	0.4	-1.31
Methanol	64.6°C	127.2	-0.77
Acetonitrile	81.6°C	88.8	-0.34
Acetaldehyde	20.8°C	740	-0.34
Ethanol	78.4°C	59.3	-0.31
Acetone	56°C	231	-0.24
Acrolein	53°C	210	-0.01
Isopropanol	82.5°C	45.4	0.05
Acrylonitrile	77.3°C	107.8	0.25
2-butanone	80°C	77.5	0.29
 Formaldehyde	-19°C	3890	0.35
Crotonaldehyde	100°C	32	0.6
Dichloromethane	39.6°C	435	1.25
МІВК	118°C	19.9	1.31
1,1,2-trichloroethane	110°C	19	1.89
Benzene	80°C	95.1	2.13
1,1,1,2-tetrachloroethane	130.5°C	13	2.39
 1,2-dichlorotetrafluoroethane	3.5°C	2014	2.82

- Methanol (low MW)
- Aldehydes (labile compounds)
 - Formaldehyde

- Alkanolamines
 Ethanolamine (Polar)
- Halocarbons
- Hydrocarbons

Characteristics of Current Approaches

- SAHAP (Submarine Atmosphere Health Assessment Program) Badge (Assay Technologies, Inc.)
 - Developed under SBIR
 - Multiple components incorporated
 - Multiple analyses required
 - Time-weighted average of calibrated components

- Active Sorbent Sampling
 - Pumping required power supply needed
 - More restricted duration vs. passive samplers
 - Can measure concentrations
 - · Requires multiple sorbent types for coverage
 - · Polar and reactive analytes problematic

Photo courtesy of Wisconsin Occupational Health Lab

SAHAP BADGE

Multiple Chemistries

- Alcohols
- Aldehydes
- Alkanolamines
- Flourohydrocarbons
- Halocarbons
- ...others

Pros

- Gold-standard sampling device
- Broad spectrum (multiple chemistries)
- Commercial analysis pipeline

<u>Cons</u>

- Higher per unit cost
- 2 units for all 19 targets!
- Cumbersome form factor not suitable for crew monitoring

Our Goals...

Validation of a Universal Passive Dosimeter

- •<u>Current goals</u>: Verify collection of target constituents of concern
 - Collection of other VOCs for surveillance sampling
 - Establish universal extraction and analysis methods
 - Determine sampling rates for targets (to determine conc.)
- Long-term goal: Provide individual longitudinal exposure records

Silicone Wristband Samplers

Sampling Device (MyExposome)

Analysis

Analysis by thermal extraction -> TD-GC/MS

Pros

- Low cost and easy to obtain
- Non-intrusive wearable
- High-capacity sampler
- VOCs and SVOCs

Cons

- Extensive pre-cleaning required
- Currently require offline thermal extraction
- Confined space requirement for determining **concentration** of VOCs

```
Fick's Law: N_i = -D_i \nabla C_i surface geometry

N_i = molar \ flux \ (mol \cdot m^{-2} \cdot sec^{-1})

D_i = diffusion \ coefficient \ (m^{-2} \cdot sec^{-1})

C_i = concentration \ (mol \cdot m^3)

UNCLASSIFIED

Distribution A. Approved for public release: distribution unlimited
```

SWB Preparation for Passive Sampling

SWB Prep Cycle

- Vacuum oven treatment
- ~300°C/ 2mbar
- 72-96 hours total time
- Multiple N₂ purge cycles
- Store under inert gas in glass containers
- Transport/short-term storage in PTFE bags

- SWB are unusable direct from vendor due to high background and contamination of instrument
- Vacuum oven treatment results in ~300mg loss in mass (7-8%)
- High cost of commercially available pre-cleaned SWB led to development of in-house prep method

Current methodology yields SWB with lower background contamination vs commercial vendor.

Offline Thermal Extraction of SWB:

- Reduces throughput
- Requires additional equipment
- Increases potential for error

*Method developed by O'Connell and Anderson et al. of Oregon State U

UNCLASSIFIED Distribution A. Approved for public release: distribution unlimited

Mesoporous Silica Tokens (Xplosafe LLC)

Pros

- No thermal extraction step
- Enclosure enables rate determination
- Potentially 100% reusable
- Integral subtraction control

Sampling Device

- 50mg OSU-6 sorbent inside PTFE sleeve
- Current form factor: Nylon clip-on badge

<u>Analysis</u>

• Direct TD-GC/MS analysis (MPS tokens)

<u>Cons</u>

- Higher per unit cost (vs SWB)
- Impact of humidity unknown
- Some pre-cleaning required*

MPS Sampler Preparation by Supercritical CO₂

MPS Prep Cycle

- Supercritical fluid extraction
- Liquid CO₂ extraction under 300 bar pressure
- 3 hr treatment in vacuum oven at 200°C
- SFE prep reduces interfering contaminants from manufacture

*Note: Commercial product is still in R&D. Batch to batch variability can be attributed to improvements and changes to cleaning processes by commercial vendor.

Pilot Study – 22 Days Aboard Fast-Attack Submarine

	<u>Ethanol</u>		
	SAHAP	SWB	MPS
F1	96200	19117	606
F2	128000	42669	1435
F3	112000	38342	1125
A1	70000	35976	0
A2	120000	38770	486
A3	104000	30962	0

	2-butanc	one			Acrolein
	SAHAP	SWB	MPS		SAHAP
F1	7330		1568	F1	0
F2	5590	128	2208	F2	667
F3	6430	109	787	F3	657
A1	7950	235	1469	A1	523
A2	7720	292	980	A2	589
A3	7880	225	1292	A3	639

	Acetone		
	SAHAP	SWB	MPS
F1	16300	17561	1537
F2	17000	20322	1266
F3	15900	20425	1764
A1	20400	31903	2082
A2	25300	31609	2406
A3	23800	33555	2270

SWB

469

MPS

46

76

34

57

	2-propar	nol	
	SAHAP	SWB	MPS
F1	42400		2451
F2	37800		3322
F3	39400		1702
A1	55000		3709
A2	61800		4490
A3	55000		4030

	<u>Benzene</u>		
	SAHAP	SWB	MPS
F1	7250	990	38
F2	5870		7
F3	6660		12
A1	14000	213	7
A2	14000		7
A3	13100		7

	Sample Key
	<u>F1</u> – Aux machine room
13	<u>F2</u> – Crew's mess
80	<u>F3</u> – Fan room (aft bh)
94	A1 – Engine room LL aft
62	A2 – Engine room LL fwd
75 98	A3 – Engine room maneuvering

SWB	F1	F2	F3	A1	A2	A3
Acetaldehyde	1032	3020	3634	4409	4051	3782
Acetonitrile	538	143	0	0	0	0
Methylene chloride	73	42	32	115	77	87
2-propenenitrile	90	44	33	40	0	0
2-butenal	0	0	0	0	0	0
Toluene	168	285	274	192	247	235
1,1,2,2-tetrachloroethane	114	0	206	280	163	0

MPS	F1	F2	F3	A1	A2	A3
Acetaldehyde	28032	531	1797	324	444	273
Acetonitrile	235	0	0	0	0	0
Methylene chloride	3	5	7	9	8	7
2-propenenitrile	260	9	26	12	9	4
2-butenal	0	121	0	0	0	0
Toluene	31	40	46	24	25	17
1,1,2,2-tetrachloroethane	0	0	0	0	0	0

- Nanograms on 1 SWB or 1 MPS token ٠
- 1 SWB = ~3.75g; 1 MPS = 0.3g
- · Good agreement between different media (presence/absence; rel. abundance)
- · High background of SWB reduces sensitivity

UNCLASSIFIED Distribution A. Approved for public release: distribution unlimited

Reproducibility of Quantitation by Sampler Type

SWB

	A1	A2	A3	F1	F2	F3	Average ng
R114	163%	148%		105%	178%		0
acetaldehyde	7%	17%	9%	33%	22%	19%	2228
ethanol	9%	7%	3%	33%	3%	5%	34306
acrolein	9%	12%	10%	172%	10%	4%	469
acetone	6%	7%	5%	16%	5%	4%	25896
2-propanol	6%	4%	4%	38%	3%	7%	0
acetonitrile				172%	169%		342
methylene chloride	48%	89%	90%	72%	5%		58
2-propenenitrile	178%		_	98%	47%	11%	20
2-butanone	11%	6%	5%	19%	3%	5%	198
benzene	15%	7%	7%	6%	4%	9%	602
2-butenal							0
methyl isobutyl ketone	30%	87%	92%			176%	45
toluene	8%	13%	7%	29%	21%	6%	164
1,1,2-trichloroethane							0
1,1,2,2-tetrachloroethane	96%	92%		87%		12%	127

MPS

	A1		A2	A3	F1	F2	F3	Average ng
R114								0
acetaldehyde		20.87%	23.55%	6.80%	98.60%	7.17%	6.96%	5108
ethanol		11.19%	9.93%	0.06%	26.03%	7.82%	19.30%	600
acrolein	7	16.51%	27.07%	14.89%		7.68%	24.06%	37
acetone		7.89%	1.33%	1.94%	35.38%	1.27%	1.27%	1888
2-propanol	7	10.16%	7.86%	6.10%	41.13%	8.91%	13.99%	3284
acetonitrile					141.42%			39
methylene chloride	7	67.87%	141.42%	141.42%	141.42%	141.42%	64.23%	7
2-propenenitrile		20.35%	9.82%	9.49%	74.79%	3.76%	27.63%	53
2-butanone		11.89%	9.40%	15.03%	55.80%	6.78%	11.71%	1384
benzene		13.76%	9.84%	3.97%	47.82%	5.42%	15.92%	13
2-butenal						141.42%		20
methyl isobutyl ketone		11.17%	7.31%	9.27%	70.31%	3.84%	13.39%	1271
toluene	7	12.55%	5.08%	5.29%	72.62%	4.17%	8.91%	30
1,1,2-trichloroethane								0
1,1,2,2-tetrachloroethane								0

- 2 devices hung at each sampling location onboard submarine
- From each device 2 technical replicates
- Net = 4 quantitative measurements
- Average and RSD are <u>of those 4</u> measures

<u>F1</u> – Aux n	nachine room
2 – Crew'	s mess
<u>F3</u> – Fan ro	oom (aft bh)
<u> A1</u> – Engin	e room LL aft
<u> 42</u> – Engin	e room LL fwd
<u>A3</u> – Engin	e room maneuvering

UNCLASSIFIED Distribution A. Approved for public release: distribution unlimited

Novel MOTS Instrumentation – TE-SIFT-MS

- Custom Gerstel autosampler and thermal extractor
- Fully automated thermal extraction and analysis of up to 30 samples
- Rapid thermal gradient (120°C/min)
- Analysis ~ 10-15 min/sample
- SIFT-MS amenable to methanol and formaldehyde analysis
- No limitations for polar/non-polar compounds

UNCLASSIFIED Distribution A. Approved for public release: distribution unlimited

Example SIFT-MS Analysis

- · Permeation tubes introduced VOCs via thermal extractor
- Thermal gradient demonstrates emission increase as function of temperature
- Emission ranges from 30-200ng/min over gradient

Simultaneous Analysis of 17 Targets vis SIFT-MS

- Mixture of 17 compounds* loaded to Xplosafe sorbent token
- Token desorbed using TD-XL system
- Simultaneous SIM scan of targets

	Time Series: Analyte Concentrations	Legend			
17		Group Source	Series		
1		4 🖸 75.00	8 🖸 75.00		
2	8				
-		2-butenal (+170			
24		🛛 🔶 2 propand (624			
-13		acetaeriyor ()			
22		🖂 🔶 acetorityle (75-	05-00		
2.1		🖂 🔶 acrolen (117-02	S → andre (197494) S → andre (197494) S → betreen (1+45) S		
2.0		- berette (/1-43			
19		🖂 🖷 butanone (78-9			
18		C + stand/64.02			
17		🖂 🔶 Freen 114 (76-1			
1.6		2 - methanol (67-56			
15		[2] → tolume (109-80			
14					
13					
12					
1.1					
10					
0.9					
0.8					
87					
86					
05	() (A) N				
0.4	1 IA Au	Select Al	Sone		
03	1 WA M	Disker settings			
82		Overlay [] Log scale			
0.1	San Pro Street West	with 1 3	s		
10 100		27/45	-		
· · · · · 50	Time (s)	Units open			

SIFT-MS uses unique reaction chemistries to provide target ID confirmation and qualitative info for unknowns

UNCLASSIFIED

 $^{*}\!Xcel+$ tokens appear to have poor affinity for R-114 and 1,1,2,2-TCA

Summary

- Current (gold-standard) samplers are bulky and require multiple, independent analyses to yield data
- New methods developed to prepare 2 novel sorbents for passive sampling of VOCs
- Novel sorbents used for sampling onboard submarine
- Collection of multiple classes of organic compounds on single media
- Both sorbents differentiated between sampling locations while underway
- Good agreement between novel sorbents and legacy device
- Development of new analytical technologies to allow analysis of multiple classes of analytes using one instrument/method

Acknowledgments

- Work was funded by Defense Health Agency Funds
 - US Navy J9 Restoral Funds (work unit F1808)
 - Defense Health Program (Joint Program Committee 5, Military Operational Medicine Research Program, work unit F1604)
- · Special thanks for the on-going collaboration among government and industrial partners
 - Gerstel
 - SYFT Technologies, Inc.
 - XploSafe
 - MyExposome

0

3

0

SWB Extract – Comparing Control to Submarine Sample

UNCLASSIFIED Distribution A. Approved for public release: distribution unlimited

Determine Rate of Absorption

UNCLASSIFIED Distribution A. Approved for public release: distribution unlimited