

Australian Government

Department of Defence Defence Science and Technology Organisation **UNCLASSIFIED – Approved For Public Release**

Review of Submarine Exhaust and Induction Mast Designs

SAMAPINTERNATIONAL

Submarine Air Monitoring Air Purification

T.H. Gan, G.I. Gamble and J.R. Robinson 9th SAMAP Conference New Orleans, USA 14 - 17 Oct 2013

Science and Technology for Safeguarding Australia

SAMAP

Aim of Review

- Navies have been continuously researching better submarine exhaust and induction mast designs post WW II
- Better stealth and endurance capabilities
- Exhaust is a system of SAM, AP and ES systems
- **DSTO SAMAPES Review**
 - Modern submarine project (2025)
 - > Better understanding of exhaust bubble characteristics
 - Better exhaust design

SAMAP

History

- First designed by Italian Navy for Sirena Class (1934 – Taranto Naval Base Museum)
 - Retractable intake with fixed exhaust mast
 - No perceived operational need
 - J. Military History 2005 (Jones)
- RNL Navy developed first telescopic snorkel
 - 1938 in O19 and O20
 - Captured by Germans in 1940
 - O21 escaped to UK, but RN perceived operational risks
 - Kriegsmarine was winning Battle of Atlantic
 - No benefit running diesel engines underwater

....

SAMAPINTERNATIO

Adoption by U-Boats

Mounting U-boat losses in 1943

- Kriegsmarine experimented with folding mast snorchel •
- Fragile mast slowed U-boats to 6 knots
 - Frequent damage and Vulnerable
 - Vibrations of diesel engines
- Type XXI U-Boat (1945)
 - Modern submarine design with radical technologies
 - \succ Noise reduction,
 - Telescopic induction integrated with engine operation

...

...

- Exhaust discharge under water
- Commissioned into Allied Navies

Science and Technology for Safeguarding Australia

(Snort trials by RN Truant and USN Irex)

- - Undetected \geq

Post WW II Designs

Myriad of Designs

- Underwater snorting
- Disperse bubble plume widely
- Angled exhausts to disperse bubbles with trajectory
- Side exhausts to disperse wide and deep
- Reduce profiles of exhaust crowns and domes

Categories of Exhaust designs

- Wide angle deflector fin (WAD)
- Open cavity angled exhaust and Flow assisted (FOCEAN)
- PORSCHE by HDW
- Plenum chamber (RNL Navy)
- AIP designs (Scorpene and Soryu)
- Aim of DSTO PASCOE with small bubbles widely dispersed leaving no wake at surface

DSTO Work 2004

CFD simulations of getting your own back

Salt water modelling

Good agreement with CFD

DSTO Work Bubble Outgas Model

Large bubbles from present submarines

- Maximum CO₂ release at surface
- Return of asphyxiant to induction mast
- Large CO₂ plume signature

Small bubbles

- No CO₂ release at surface
- Snorting capability in shallow waters
- RNL Navy efforts to produce small exhaust bubbles

DSTO

Wide Angle Deflector

HDW 1967

...

- Designed to deflect bubble plume
- *Wide dispersal,* large bubble splitter
- Small engine backpressure
- But expect large bubble burst and crown

Song Class

Same principle as WAD

DSTO

- Honeycomb exhaust (RNL Navy)
 - Disperse bubbles sideways
- Deflector - greater depth from surface
- Larger engine backpressure
 - Less efficient snorting

Open Cavity Angled Exhausts (OCEAN)

- Agosta Class
- Small angled cavity
 - To reduce exhaust volume
 - Overcome by engine backpressure

- Downward exhaust trajectory
 - Wider dispersal of exhaust plume
- Expect large bubble burst at surface
 - Little dispersal due to big bubbles

Flow Assisted OCEAN (FOCEAN)

Taiwan Navy

- Improved Dutch Zwarvdis
- Similar to Agosta design
- Scoop at rear of exhaust
 - Assists hydrodynamic flow
 - Wider and longer path dispersal of exhaust plume

...

Expect large bubble crown at surface

DSTO

PORSCHE (TWIN PIPE)

HDW 1990s

- Exhaust pipe extends along top of sail
 - 2 joints to avoid backpressure from other engine exhaust

....

...

....

...

....

....

DSTO

- Low snort depth
 - Low hydrostatic pressure
- Collins variant
 - Slots for bubble breakup
 - Bubbles further aft
- Expect large bubble plume

...

High dome or crown

Yuan Class and Chile Scorpene

- Grille to split bubbles
- Similar to RAN Oberon Class exhaust design
- Different shapes
- Expect large bubbles

....

DSTO

RNL Navy PC_PORSCHE

- Double chamber with bubble diffuser
- Small bubbles but coalesce to medium sized bubbles
- Fast bubble rise
- Lower bubble dome at surface

France Scorpene

- Improved Agosta design
- Large rear exhaust
- Side exhaust with small holes
 - Side dispersal of bubbles

- Mixture of large, small and medium sized bubble plume (Complex)
- Streamlined sail

DSTO

Soryu Class

Absence of exhaust on sail

- Telescopic induction within exhaust pipe
 - Similar to RN combined induction exhaust
 - Advantage avoiding getting your own back
 - Better air quality
- Has room for modifications

Simulations Using Box Model

- Not scale model
- Simulations at low cost
 - Not quantitative or rigorous
 - But, Good quality visualisations
- Reproducible conditions
- Easy comparison with CFD modelling

....

...

.

DSTO

....

Rapid assessment of design effects

...

...

- Rigorous methods
 - Paralysis by analysis

Water Tank Experiments – Open Exhaust

Bubble Characteristics

Adhesive attraction forces on wetted surfaces

- Delayed rise to surface
- At air-liquid interface, minimum free energy and surface area
- But liquid-solid contact area is maximum for adhesion
- Diminishes for larger bubbles
- Bubble coalescence by cohesive attraction
 - Formation of undesirable larger bubbles
- Shape of bubble burst crown or dome
 - Bubble size

....

Surface tension(salinity, chemical surfactants, temperature)

Box Model – RNL Navy Simulation

Induction Mast Design

- Exhaust design in tandem with induction mast
- CFD modelling of plume reentry
- Advanced funnel design concept

....

.

...

- BP 'Emerald Green'
- Plume avoidance of tail wind

Future SAMAPES Work

CFD modelling of exhaust performance

- Better understanding of bi-phasic (air-liquid) plume behaviour
- Small bubbles, added momentum (from jet) with smaller Reynolds
- Trajectory and dispersal visualisation (3-D)
- Scale model development
- Tow tank experiments
- Capability demonstrator model (5 years)
- Possible prototype and trials in Collins
- Collaboration via DEA, MOU

Conclusions

...

Review showed great variety of present and past designs

- COMPLEX and SIMPLE (Post WW II to modern)
- Non-powered and flow assisted
- Aim to Disperse bubble plume
- Open cavity simulated large bubbles and high crown or dome
- Bubble splitters simulated formation of smaller bubbles and low domes at surface
- Bubbles influenced by adhesive and cohesive attraction forces
- Smaller bubbles *coalesce* on *wetted surfaces*, forming larger bubbles
- Future SAMAPES improvements will focus on small bubble exhausts leaving little or no wake on surface

Questions

.

...

000

...

...

....

DSTO Science and Technology for Safeguarding Australia

DSTO