This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

Li-ion batteries in submarines: Gas monitoring & handling

Current knowledge and outlook

Viola Nilsson, MSc. Systems Engineer at Saab Kockums

COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Your Name | Document Identification | Issue 1

Introduction

- Viola Nilsson, 27, Malmö, Sweden
- Submarine Systems Engineer at Saab Kockums(2021-now)
 - Air Purification
 - Air Monitoring
 - Oxygen

2 COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIE Your Name | Document Identification | Issue

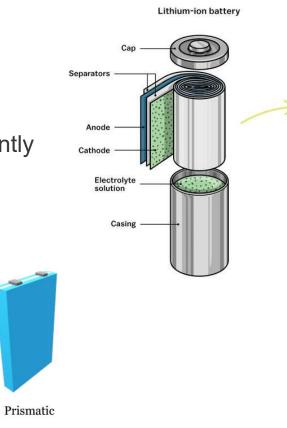
Aim

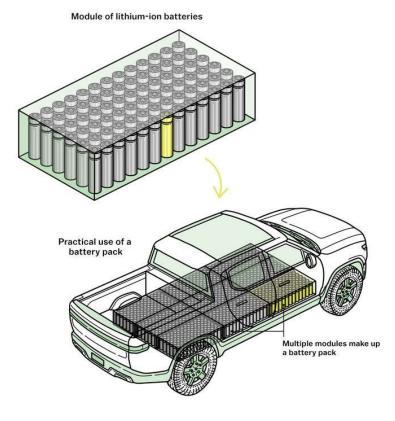
Summarize current research:

- Factors impacting thermal runaway gas composition (battery chemistry, state of charge, trigger method, atmosphere)
- How early signs of thermal runaway can be detected with a gas monitoring system (target gases, sensing methods)
- Handling of gases expelled in thermal runaway

Discussion

- How can we monitor to prevent TR on submarines?
- What gases should we monitor?
- How should we handle gases produced in TR?

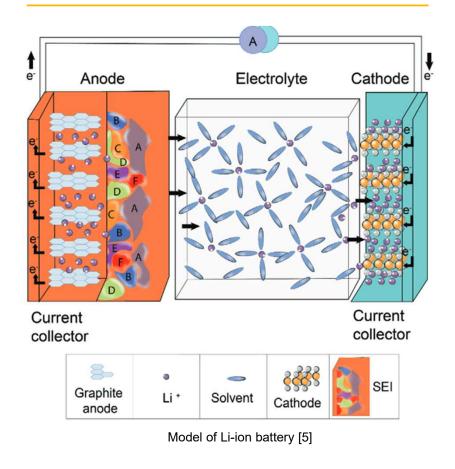



Lithium-ion batteries

- In Electrical Vehicles
- Submarines next?

Cylindrical

- High energy density •
- Fast development, constantly • new research



4

Pouch

Sources: [17], [34]

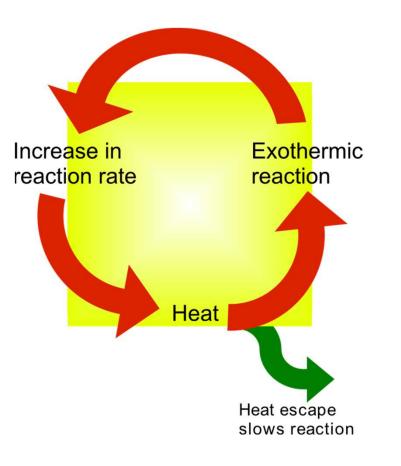
Lithium-ion batteries

- Anode carbon based
- Cathode metal oxide
- Electrolyte liquid

5 COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIE Your Name | Document Identification | Issue

Thermal Runaway

Tesla Li-ion car suspected Thermal Runaway fire. Switzerland, May 10 2018 (Reuters)

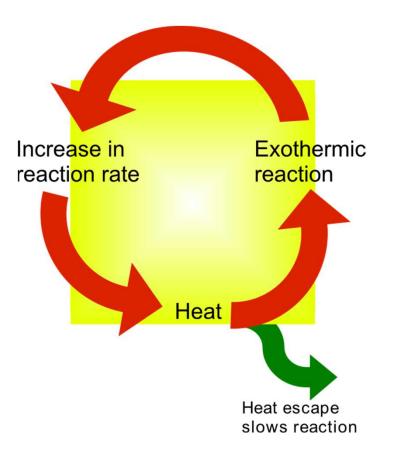

COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Your Name | Document Identification | Issue 1

Thermal Runaway (TR)

- Exothermic reaction
- Self-heating
- Cause:

7

- Mechanical
- Electrical
- Outside temperature

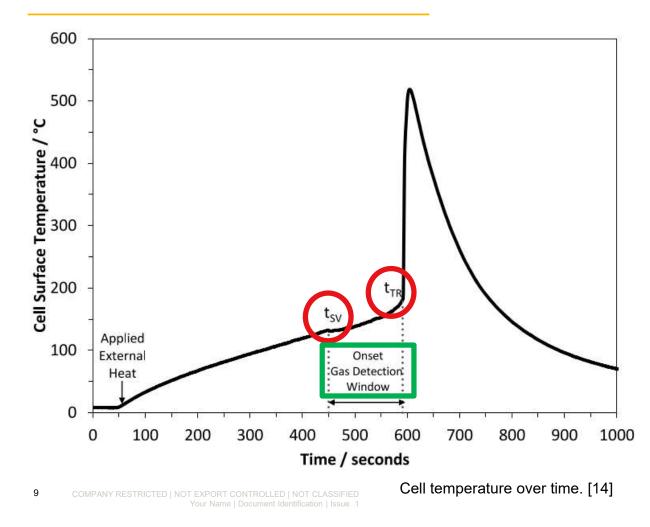


Sources: [11], [12], [13], [14], [15],[16]

COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Your Name | Document Identification | Issue

Thermal Runaway (TR)

- Toxic & flammable gases produced
- Could lead to DISSUB (Distressed submarine) situation
- UN global technical regulation: Electrical vehicles should send alarm to user 5 minutes before hazardous conditions caused by TR



Sources: [11], [12], [13], [14], [15], [16]

COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Your Name | Document Identification | Issue 1

8

TR process

- tsv = safety venting
- t_{TR} = thermal runaway
- Onset gas detection window.
- Safety venting the first sign of TR! Bursting disc on cylindrical batteries.

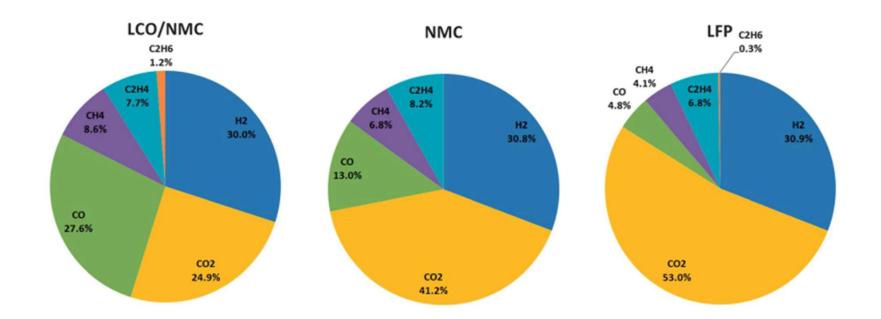
TR factors

- Which gases forms in TR?
- How much gas forms?

Depends on:

- Battery chemistry
- State of Charge
- Trigger Method
- Atmosphere

TR: Battery chemistry

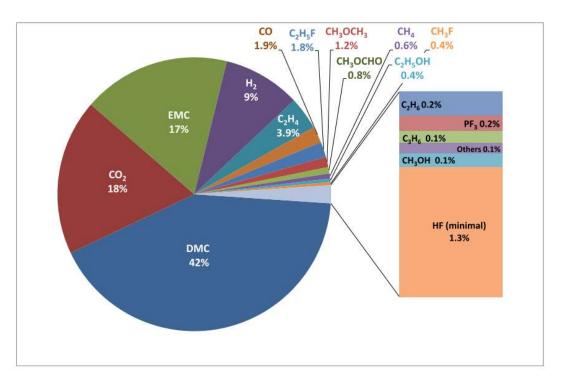

Cathode	Chemistry	
NMC	Nickel-Mangan-Cobolt	
LFP	Lithium-Iron-Phosphate (LiFePO4)	
NCA	Nickel-Cobolt-Aluminium	
LCO	Lithium-Cobolt-Oxide	
LMO	Lithium-Mangan-Oxide	

Common VOC types dependant on chemistry

- DMC-gas (Dimethylcarbonate)
- EMC-gas (ethylmethylcarbonate)
- DEC-gas (Diethylmethylene)

Sources: [18], [19], [20]

TR: Battery chemistry

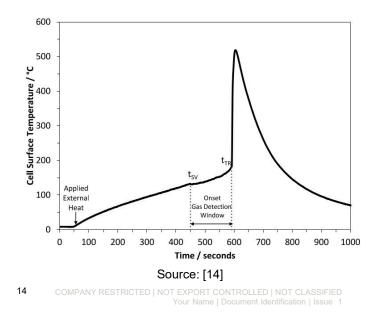

TR: Battery chemistry: example

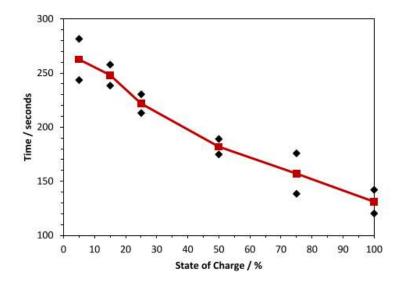
LFP battery:

Composition of gases generated from TR.

Example: small amounts of HF!

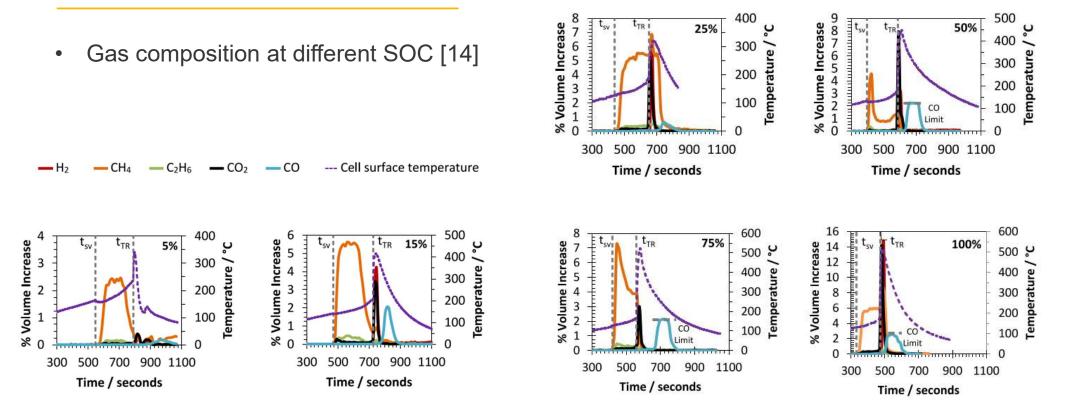
Sometimes fluorides used in solvent in electrolyte.




Sources[19]

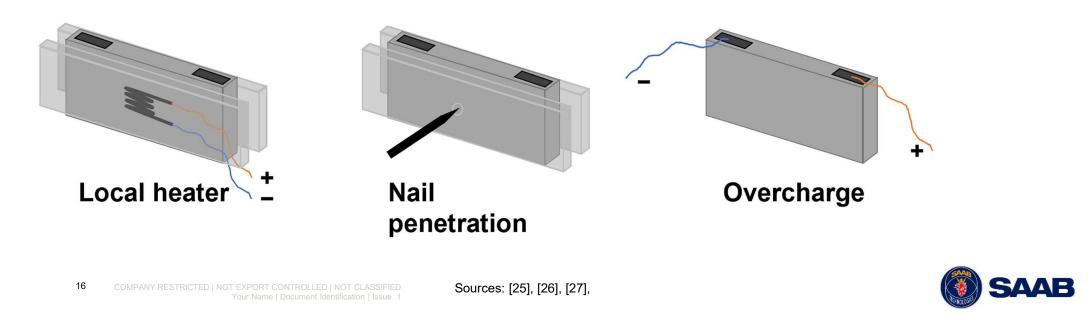
TR: State of Charge (SOC)

- How charged the battery is (0-100%)
- Higher SOC -> more violent TR
- Temperature for SV + TR is lower
- Shorter onset gas detection window

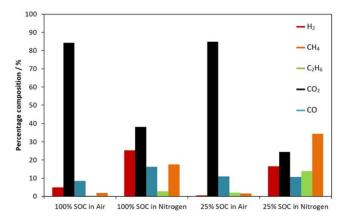


Onset gas detection window at each SoC. [14]

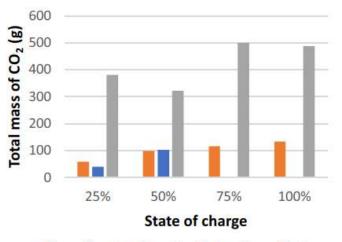
TR: State of Charge (SOC)



TR: Trigger methods


- Thermal overheating
- Electrical overcharging
- Mechanical nail penetration

- One study: important for gas production, mass temp etc, but not composition [26]
- Other study: overcharging lead to more toxic and explosive gases [27]



TR: Atmosphere

- Air open, reactive
- Nitrogen gas closed, inert
- More CO₂ in open atmosphere
- More CO in closed atmosphere

Gas composition in air vs nitrogen at 100% and 25% SOC [14]

Closed/Inert Open (no fire) Open (fire)

Mass CO2 in closed/open atmosphere. Open atmosphere is divided into two catagories: no fire and fire (where gases are burned) [26]

17 COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Your Name | Document Identification | Issue

Gas Monitoring System

- THE key for early detection of TR!
- Temperature, pressure, current, etc is not quick enough
- Combination is suggested
- With early detection, the consequences of TR can be mitigated.
- Avoid false positives
- What sensors? Which gases? Sensor principle?

Sources: [15]

Target gas

- Which gas(es) should we measure for early detection?
 - Found in chosen battery chemistry
 - Easy to measure

- Suggested from literature:
 - CO₂
 - CO
 - VOC
 - DEC, DMC
 - H₂

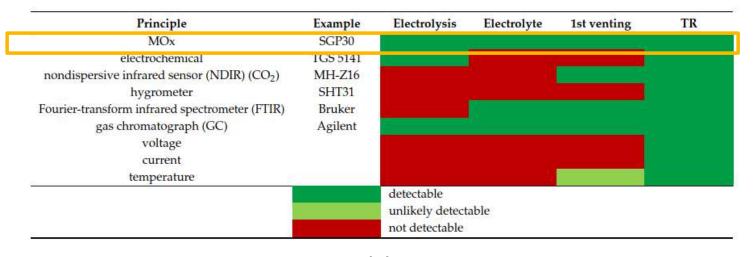
Sources: [18], [19], [20]

How to measure?

- Background sensors
- Actual value?
- Rate of rise (acceleration of concentration change)? (Li-ion tamer)

Sources: [18], [19], [20]

Sensor principles


Suggested from scientific papers:

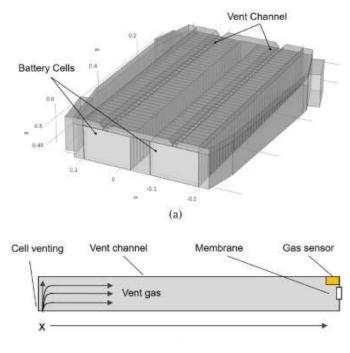
- Chemical
- Electrochemical
- NDIR (Non dispersive infrared)
- MOx (Metal Oxide Sensor), SMOx
- FTIR (Fourier infra red spectrometer)
- GC (Gas chromatography)

Sources: [14], [15], [25]

Sensor principles

[15]

Gas Sensor Type	Principle	Cross Sensitivity	Drift (% per year)	Lifetime (years)	Unit Price (\$)
Electrochemical VOC	Measure potential or current for reaction at the electrodes	Yes	2-15%	7-10	20-30
Semiconductor VOC	Measure electrical resistance of metal oxide	Yes	5%	5	5-10
Chemical CO ₂	Sensitive layers for detection	Yes	3-5%	2-5	15-35
NDIR CO ₂	Optically measure specific wavelengths of light	No	0.15%	15	8-20


[25]

Gas handling/venting

- Evs: network of ventilation channels
- Shouldn't be released into submarine atmosphere
- Evacuate through ventilation ducts to exit submarine?
- Collect?

[25]

23 COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIE Your Name | Document Identification | Issue

Conclusions

- Rapid innovations & studies
- Li-ion batteries in future submarines?
- Gas monitoring essential for early warning of thermal runaway
- Gas handling
- More research on gas monitoring for Liion batteries.
- Submarine specific research

- How can we monitor to prevent TR on submarines?
- What gases should we monitor?
- How should we handle gases produced in TR?

Thank you!

SAMAP 2024

COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Your Name | Document Identification | Issue 1

Sources

- [1] "The Four Components of a Li-ion Battery," Samsung SDI, 2016. [Online]. Available: https://www.samsungsdi.com/column/technology/detail/55272.html. [Accessed 2024].
- [2] M. Bondarde, R. Jain and J. Soo Sohn, "Carbon-based anode materials for lithium-ion batteries," Lithium-Sulfur Batteries, 2022.
- [3] M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev and R. Staniewicz, "Main aging mechanisms in Li ion batteries," Journal of Power Sources, vol. 146, no. 1-2, 2005.
- [4] S. K. Heiskanen, J. Kim and B. L. Lucht, "Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries," Joule, vol. 3, no. 10, 2019.
- [5] H. Adenusi, G. A. Chass and S. Passerini, "Lithium Batteries and the Solid Electrolyte Interphase (SEI)—Progress and Outlook," Advanced Energy Materials, vol. 13, no. 10, 2023.
- [6] H. Xu, C. Han, L. Enting, H. Li and X. Q. Qiu, "Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries," Journal of Power Sources, vol. 529, 2022.
- [7] T. Gao, J. Bai, D. Ouyang, Z. Wang and W. Bai, "Effect of aging temperature on thermal stability of lithium-ion batteries: Part A High-temperature aging," Renewable Energy, vol. 203, 2023.

Sources

[8]	J. Janek and W. Zeier, "Challenges in speeding up solid-state battery development," Nature Energy, 2023.
[9]	J. G. Kim, B. Son, S. Mukherjee and Schuppert Nicholas, "A review of lithium and non-lithium based solid state batteries," Journal of Power Sources, vol. 282, 2015.
[10]	B. Jagger and M. Pasta, "Solid electrolyte interphases in lithium metal batteries," Joule, vol. 7, no. 10, 2023.
[11]	J. T. Warner, "Lithium-Ion Battery Chemistries - A primer," 2019, pp. 43-77.
[12]	P. Andersson, P. Blomqvist, A. Lorén and F. Larsson, "Investigation of fire emissions from Li-ion batteries," SP Sveriges Tekniska Forskningsinstitut, 2013.
[13]	Q. Wang and P. Ping, "Thermal runaway caused fire and explosion of lithium ion battery," Journal of Power Sources, vol. 208, 2012.
[14]	C. K. Abott, J. E. Buston, J. Gill, S. L. Goddard, D. Howard and G. Howard, "Comprehensive gas analysis of a 21700 Li(Ni0.8Co0.1Mn0.1O2) cell using mass spectrometry," Journal of Power Sources, vol. 539, 2022.
[15]	C. Essl, L. Seifert, M. Rabe and A. Fuchs, "Early Detection of Failing Automotive Batteries Using Gas Sensors," Batteries, 2021.
[16]	Z. Liao, Z. S, L. K, G. Zhang and T. Habetler, "A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries," Journal of Power Sources, vol. 436, 2019.
[17]	R. Bisschop, O. Willstrand, F. Amon and M. Rosengren, "Fire Safety of Lithium-Ion Batteries in Road," Rise, Borås, 2019.
[18]	G. Saldaña, J. I. San Martin, I. Zamora, F. J. Asensio and O. Oñederra, "Analysis of the Current Electric Battery Models for Electric Vehicle Simulation," Energies, 2019.
[19]	Y. Fernandes, A. Bry and A. de persis, "Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery," Journal of Power Sources, 2018.
[20]	U. Bergström, Å. Gustafsson, L. Hägglund, C. Lejon, D. Sturk and T. Tengel, "https://www.msb.se/siteassets/dokument/publikationer/english-publications/vented-gases-and-aerosol-of-automotive-li-ion-lfp- and-nmc-batteries-in-humidified-nitrogen-under-thermal-load.pdf," FOI, 2015.
[21]	G. Lombardo, S. J. F. Mark R, B. Ebin, L. Yeung, B. Steenari and M. Petranikova, "Determination of Hydrofluoric Acid Formation During Fire Accidents of Lithium-Ion Batteries with a Direct Cooling System Based on the Refrigeration Liquids," Fire Technology, vol. 59, 2023.
[22]	F. Larsson, P. Andersson, P. Blomqvistt and BE. Mellander, "Toxic fluoride gas emissions from lithium-ion battery fires," Nature, 2017.

Sources

- [23] Z. Wang, T. He, H. Bian, F. Jiang and Y. Yang, "Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs," Journal of Energy Storage, no. 41, 2021.
- [24] Y. Fu, S. Lu, K. Li, C. Liu, X. Cheng and H. Zhang, "An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter," no. 273, 2015.
- [25] T. Cai, P. Valecha, V. Tran, B. Engle, A. Stefanopoulou and J. Siegel, "Detection of Li-ion battery failure and venting with Carbon Dioxide sensors," eTransportation, no. 7, 2021.
- [26] O. Willstrand, M. Pushp, P. Andersson and D. Brandell, "Impact of different Li-ion cell test conditions on thermal runaway characteristics and gas release measurements," Journal of Energy Storage, 2023.
- [27] C. Essl, A. Golubkov and A. Fuchs, "Comparing Different Thermal Runaway Triggers for Two Automotive Lithium-Ion Battery Cell Types," Journal of The Electrochemical Society, vol. 167, 202.
- [28] V. Mateev, M. I and Z. Kartunov, "Automatic System for Li-Ion Battery Packs Gas Leakage Detection," International Conference on Sensing Technology, 2018.
- [29] S. Cummings, S. Swartz, N. Frank, W. Dawson, D. Hill and B. Gully, "Systems and Methods for Monitoring for a Gas Analyte". US Patent US20180003685A1, 2018.
- [30] N. Warner, "Nexceris Li-Ion Tamer Testing Summary Test Report," Energy Safety Response Group LLC, 2021.
- [31] A. Golubkov, D. Fuchs et al. "Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type

Cathodes", RSC Adv, 2014

28

[34] https://www.vox.com/recode/23027110/solid-state-lithium-battery-tesla-gm-ford

SAAB