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Aim

Summarize current research:

Factors impacting thermal runaway gas
composition (battery chemistry, state of
charge, trigger method, atmosphere)

How early signs of thermal runaway
can be detected with a gas monitoring
system (target gases, sensing
methods)

Handling of gases expelled in thermal
runaway

Discussion

How can we monitor to prevent TR on
submarines?

What gases should we monitor?

How should we handle gases produced
in TR?




Lithium-ion batteries

Module of lithium-ion batteries

Lithium-ion battery

 |n Electrical Vehicles
 Submarines next? ——

« High energy density

Anode

* Fast development, constantly
new research

solution

Practical use of a

Casing
battery pack

Multiple modules make up
a battery pack

Cylindrical Pouch Prismatic

4 Sources: [17], [34]




Lithium-ion batteries
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Model of Li-ion battery [5]

Anode — carbon based
Cathode — metal oxide

Electrolyte — liquid
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Thermal Runaway (TR)

 Exothermic reaction

« Self-heating

« (Cause: Increase in Exothermic
« Mechanical reaction rate reaction

» Electrical
» Outside temperature

Heat

Heat escape
slows reaction

7 Sources: [11], [12], [13], [14], [15],[16]



Thermal Runaway (TR)

« Toxic & flammable gases produced

« Could lead to DISSUB (Distressed submarine)
situation

Increase in Exothermic
* UN global technical regulation: Electrical reaction rate reaction

vehicles should send alarm to user 5 minutes
before hazardous conditions caused by TR

Heat

Heat escape
slows reaction

8 Sources: [11], [12], [13], [14], [15],[16]




TR process
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Cell temperature over time. [14]

tsv = safety venting
trr= thermal runaway

Onset gas detection
window.

Safety venting — the first
sign of TR! Bursting disc
on cylindrical batteries.




TR factors

Which gases forms in TR?

How much gas forms?

Depends on:

10

Battery chemistry
State of Charge
Trigger Method

Atmosphere




TR: Battery chemistry

Cathode Chemistry Common VOC types dependant on
NMC Nickel-Mangan-Cobolt chemistry
x:- DMC-gas (Dimethylcarbonate)
LFP Lithium-Iron-Phosphate < EMC-gas (ethylmethylcarbonate)
(LiIFePO4) - DEC-gas (Diethylmethylene)
NCA Nickel-Cobolt-Aluminium
LCO Lithium-Cobolt-Oxide

LMO Lithium-Mangan-Oxide

11 Sources: [18], [19], [20]




TR: Battery chemistry

LCO/NMC NMC

C2H6
1.2%

Sources: [31]




TR: Battery chemistry: example

LFP battery: CO  CHF CH,OCH,  CH, CH.F

1.9%_ 18% _1.2% 0.6% _0.4%

C,H;OH

Composition of gases generated from TR. ; 0.4%

Example: small amounts of HF!

Sometimes fluorides used in solvent in electrolyte.

13 Sources[19]




TR: State of Charge (SOC)

« How charged the battery is (0-100%)
* Higher SOC -> more violent TR

» Temperature for SV + TR is lower

» Shorter onset gas detection window
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State of Charge (SOC)
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TR: Trigger methods

* Thermal — overheating * One study: important for gas
- Electrical — overcharging productl_o_n, mass temp etc, but not
composition [20]

 Mechanical — nail penetration
echanica P ! » Other study: overcharging lead to more

toxic and explosive gases [27]

Nail Overcharge

penetration

16 Sources: [25], [26], [27],




100

TR: Atmosphere - .
- Air — open, reactive -
* Nitrogen gas — closed, inert g ’

100% SOC in Air ~ 100% SOC in Nitrogen ~ 25% SOC in Air 25% SOC in Nitrogen

Gas composition in air vs nitrogen at 100% and 25% SOC [14]

* More CO: in open atmosphere

* More CO in closed atmosphere 600
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Mass CO2 in closed/open atmosphere. Open atmosphere is divided
17 into two catagories: no fire and fire (where gases are burned) [26]




Gas Monitoring System

« THE key for early detection of TR!

» Temperature, pressure, current, etc is
not quick enough

« Combination is suggested

* With early detection, the consequences
of TR can be mitigated.

» Avoid false positives

* What sensors? Which gases? Sensor
principle?

18 Sources: [15]




Target gas

* Which gas(es) should we measure « Suggested from literature:
for early detection? « CO,
* Found in chosen battery chemistry . CO
« Easy to measure e VOC
- DEC, DMC

19 Sources: [18], [19], [20]

H-




How to measure?

« Background sensors
* Actual value?

» Rate of rise (acceleration of
concentration change)? (Li-ion tamer)

20 Sources: [18], [19], [20]



Sensor principles

Suggested from scientific papers:

21

Chemical

Electrochemical

NDIR (Non dispersive infrared)

MOx (Metal Oxide Sensor), SMOXx
FTIR (Fourier infra red spectrometer)

GC (Gas chromatography)

Sources: [14], [15], [25]




Sensor principles

Principle Example Electrolysis Electrolyte 1st venting TR
MOx s
electrochemuical 1Gh 2141
nondispersive infrared sensor (NDIR) (CO3) MH-Z16
hygrometer SHT31
Fourier-transform infrared spectrometer (FTIR) Bruker
gas chromatograph (GC) Agilent
voltage
current
temperature
detectable
unlikely detectable
_ not detectable
(15]
Gas Sensor Type Principle Cross Sensitivity Drift (% per year) Lifetime (years) Unit Price ($)
Electrochemical VOC Measure potential or current for reaction at the electrodes Yes 2-15% 7-10 20-30
Semiconductor VOC Measure electrical resistance of metal oxide Yes 5% 5 5-10
Chemical (. Sensifive lavers for detection Yps 2_5% 25 15—35
NDIR COy Optically measure specific wavelengths of light No 0.15% 15 8-20
[25]

22




Gas handling/venting

 Evs: network of ventilation channels

‘ent Channel

 Shouldn’t be released into submarine
atmosphere Faltary.Colle: )

« Evacuate through ventilation ducts to
exit submarine?

 Collect?

Cell venting Vent channel Membrane Gas sensor

\ S e R
= w o

(25]

23



Conclusions

« Rapid innovations & studies  How can we monitor to prevent TR on

. o . i 2
* Li-ion batteries in future submarines? submarines

L . . itor?
. Gas monitoring essential for early What gases should we monitor”

warning of thermal runaway * How should we handle gases produced
« Gas handling n TR?
* More research on gas monitoring for Li-

ion batteries.

« Submarine specific research

24
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