Submarine Life Support

applied respiratory physiology

Composed by Jos Bogaert and Mattijn Buwalda Submariner / Anaesthesiologist-intensivist & DMP Presented by Jos Bogaert

What is a submarine?

- designed to operate submersed
- contained space with a pressure hull
- atmospheric pressure inside

a Dutch invention: the first submarine 1620

The first submersible of whose construction there exists reliable information was built in 1620 by <u>Cornelius Drebbel</u>, a <u>Dutchman</u> in the service of <u>James I of England</u>.

The *Turtle* (also called the *American Turtle*) was the world's first <u>submersible</u> with a documented record of use in combat. It was built in <u>Old Saybrook, Connecticut</u> in 1775 by <u>American Patriot David Bushnell</u> as a means of attaching <u>explosive</u> <u>charges</u> to ships in a harbor.

Compressed air powered propulsion 1863

Plongeur (French for "Diver") was a <u>French submarine</u> launched on 16 April 1863. She was the first submarine in the world to be propelled by mechanical (rather than human) power. The submarine used a <u>compressed-air engine</u>, propelled by stored <u>compressed</u> air powering a <u>reciprocating engine</u>. The air was contained in 23 tanks holding air at 12.5 <u>bar</u>(1.25 <u>MPa</u>, 180 <u>psi</u>), taking up a huge amount of space (153 m³/5,403 ft³), and requiring the submarine to be of unprecedented size. The engine had a power of 60 kW (80 hp), and could propel the submarine for 5 <u>nmi</u> (9 km), at a speed of 4 <u>kn</u> (7.2 km/h).

Steam powered propulsion 1885

first practical steam-powered submarines, armed with torpedoes and ready for military use. The first was the *Nordenfelt I*, a 56 tonne, 19.5 meter (64 ft) vessel), with a range of 240 kilometers (150 mi, 130 nm), armed with a single <u>torpedo</u>, in 1885. *Nordenfelt I* operated on the surface by steam, then shut down its engine to dive. While submerged the submarine released pressure generated when the engine was running on the surface to provide propulsion for some distance underwater.

Battery powered propulsion 1878

The Irish inventor John Philip Holland built a model submarine in 1876 and a full scale one in 1878, followed by a number of unsuccessful ones. In 1896 he designed the Holland Type VI submarine. This vessel made use of internal combustion engine power on the surface and electric <u>battery</u> power for submerged operations.

U-9 1910

German submarines at Kiel, Schleswig-Holstein, on 17 February 1914. As U 22 (the newest boat) was commissioned in November 1913, the photo was taken in 1914. Caption says: "Our submarine boats in the harbor" (in German).

Nuclear powered submarine Ohio class

The first Dutch Submarine

Dutch Submarine Service

• Early history

- The Royal Netherlands Navy Submarine Service (OZD) was established on 21 December 1906. In this year the <u>Royal Netherlands Navy</u> commissioned its first submarine, <u>HNLMS *O* 1</u>. The OZD was tasked with taking care of the equipment of the submarines and the training of the crews.
- At this time there were still doubts about the usefulness of submarines. Royal Netherlands Navy officers did indeed see an "interesting and ingeniously constructed mechanism in the vessel, but were hesitant about their practicality. Trial sailing slowly but surely removed the doubts in the naval command. Only under the influence of the <u>First World War</u> did the officers get more interested in the new type of war material

• World War II

• During World War I and the <u>interwar period</u>, the Royal Netherlands Navy ordered and built many submarines. As a result, at the start of <u>World War II</u>, the OZD had more than 20 submarines at its disposal

The snorcle: a Dutch invention!

The Dutch *O-21 series* was operating a device named a *snuiver* (*sniffer*). The Dutch navy had been experimenting as early as 1938 with a simple pipe system on the submarines <u>*O*-</u> <u>19</u> and <u>*O-20*</u> that enabled them to travel at periscope depth operating on its diesels with almost unlimited underwater range while charging the propulsion batteries. The system was designed by the Dutchman <u>Jan Jacob</u> <u>Wichers</u>. Photo # 80-G-442938 USS U-3008 at Key West, July 1947

Expansion

- After 1945, the OZD had eight submarines, but due to intensive use in the war these were in a bad condition. Also the fact that the fleet consisted of different classes was a problem. It made maintenance and exercise of crews very pricey. Due to the economic malaise and the high costs caused by operations in the Dutch East Indies, there was no money left for new construction. In the end the navy managed to take four submarines on loan from the British and the Americans. In 1946, the Netherlands still had a total of eight operational submarines in service: <u>HNLMS 0 21</u>, 0 23, 0 24, 0 27, Dolfijn, Zwaardvisch, Zeehond, and <u>Tijgerhaai</u>.
- For the OZD, this period just after World War II meant depending on Dutch pre-war submarines and second-hand British and American submarines. The commissioning of the <u>Dolfijn-class submarines</u> in the early 1960s was an important milestone. The four boats formed the backbone of the OZD during a large part of the <u>Cold War</u>; they were in service from 1960 to 1992
- Cold War
- The Dutch submarine fleet never reached the size it had before the World War II again The new global power relations also generated a new package of tasks. In cooperation with other <u>NATO</u> countries, these are mainly non-attack tasks. Since the Dutch submarines were ideally suited for unnoticed explorations, the OZD was mostly focused on gathering intelligence during the Cold War. This happened, for example, during the <u>West New Guinea dispute</u> in the early 1960s, when three Dutch submarines patroled the Indonesian ports, to warn against possible invasions of <u>West New Guinea</u>

Cold War Missions

- In the period from 1970 to the 1990s, the crew of the six Dutch submarines secretly gathered information about the Soviet Union. Most of the missions the OZD carried out remain secret to this day.
- Although the cold war was not a real war, but there were certain dangers of operating in hostile waters
- During this period there was not much attention for survivability or escape.
- Basic life gasses were monitored but the standards for Co2 were high as the limit for O 2 was verry low.

Research for Survivability

- It was only after the Kursk accident and the fire on board Chicoutimi that RNLN started investigating in 7 days survivability and modern ways of escape and rescue.
- It was only in 2006 that RNLN did their first survivex who was briefed at SAMAP in 2007
- Because Mattijn is working as an Anaesthesiologist he looked at figures of air consumption and CO2 production differently and he took more factors in consideration
- In the following slides the calculations for dissub survival

Submarine Design Challenges

Life support

- temperature
- moisture control
- odours & toxic vapours
- water supply
- oxygen
- carbon dioxide
- submarine escape

Engineering

- streamlining
- pressure hull
- propulsion system (surface and submersed
- navigation
- stealth
- weapon systems
- storage/ interior design

DISSUB: disabled or distressed submarine that is not able to surface and to ventilate it's atmosphere breathing in an enclosed space life support system out of order! calculating endurance..... "how long before the crew is out of breath?"

What do we need to know?

info needed

Cubic meters

Nr of crew

O₂ consumption rate

CO₂ production rate

Hypoxic tolerance level

Hypercapnic tolerance level

What more do we need to know?

info needed	Additional info
Cubic meters	Submarine model/type
Nr of crew	
O ₂ consumption rate	Activity level: ?
CO ₂ production rate	RQ: ?
Hypoxic tolerance level	Acceptable degree of
Hypercapnic tolerance level	incapacitation ?
	Physical fitness ?

What more do we need to know?

info needed	Additional info	Additional info	
Cubic meters	Submarine model/type	Walrus class	
Nr of crew		50	
O_2 consumption rate	Activity level: ?	diet	
CO ₂ production rate	RQ: ?		
Hypoxic tolerance level	Acceptable degree of incapacitation ?	Hypoxic signs & symptoms ? Hypercapnic signs & symptoms ?	
Hypercapnic tolerance level	Physical fitness ?		
How long do they have? Before emergency escape or death?	4 groups, use yo laptop or Ipad	ur	

Let's try to solve the puzzle together!

The Walrus class

Ship	Laid down	Launched	Commissioned	Fate
<u>Walrus</u>	11 October 1979	28 October 1985	1992	Decommisione d
Zeeleeuw	24 September 1981	20 June 1987	1990	In service
<u>Dolfijn</u>	12 June 1986	25 April 1990	1993	In service
<u>Bruinvis</u>	14 April 1988	25 April/May 1992	1994	In service

General characteristics

Displacement: 2,350 t surfaced, 2,650 t submerged, 1,900 t standard

Dimensions: 67.73 x 8.4 x 6.6 m

Propulsion: 3 SEMT Pielstick 12PA4V200SM diesels, 1 Holec mainmotor, 1 shaft, 6 blades

Speed: 13 knots surfaced, 20 knots submerged

Torpedo tubes:4 torpedos: 20

Crew: 50

Content inner hull compartment

outer dimensions: 67.73 x 8.4 x 6.6

content cylinder : ∏r²h

? Cylinder shape? Constant cylinder

A cramped space indeed!

Official Dutch Navy intell

	Bruto	Netto
Volume Aft (MMR, SR & ER)	550	435
Volume Controlroom / accommodation	610	495
Volume Battery Hold	?	70
Volume Forward Escape Compartment	245	200

1200 M³

Oxygen consumption

- BMR: 250 ml/min (70 kg)
- DISSUB: inactive crew: ? 400ml/min
- Entraped 440 ml/min (mining industry, 24h average including sleeping):
- Walking: 1 L/min
- Running (12km/h): 3 L/min
- $VO_{2 max}$ athletes: 6 L/min

Porter RK. Allometry of mammalian cellular oxygen consumption. CMLS 2001;58:815-822

Body mass, kg

Influence of physical fitness

RQ

Results: RQ			
	RQ	CARB%	FAT %
	0,70	0	100
	0.75	15,6	84.4
The RQ is the ratio between the CO_2 produced and O_2 consumed	0.80	33.4	66.6
	0,85	50.7	49.3
	0.90	67.5	32.5
$CARB = C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$	0,95	84.0	16.0
$FAT = C_{16}H_{32}O_2 + 23O_2 \rightarrow 16CO_2 + 16H_2O$	1.00	100	0

More carbs > more CO₂ produced Average diet RQ = 0.8

Hypoxia & the brain

What is the reliability of SpO₂ in the lower range?

Reliability of SpO₂

- 100 70% range accuracy 2-4%
- < 70% ?
- pulsoximetry is calibrated in the 70-100% range with healthy volunteers.
- In the lower range it is the 660 nm led alone that measures absorption. Any variation in 660 nm LED output will have a large influence on accuracy

VO₂ and CO₂ production

info needed	Additional info	Additional info
Cubic meters	Submarine model/type	Walrus class = 1200 M ³
Nr of crew		50
O ₂ consumption rate CO ₂ production rate	Activity level: surveillance mode $VO_2 = 400 \text{ ml/min}$ $CO_2 = 320 \text{ ml/min}$	RQ = 0.8 Standard diet
Hypoxic tolerance level Hypercapnic tolerance level	Acceptable degree of incapacitation Physical fitness	Hypoxic signs & symptoms Hypercapnic signs & symptoms

How low can you go?

Hypoxia & aviation

Stages	Indifferent Stage (98%–90% O ₂ saturation)	Compensatory Stage (89%–80% O ₂ saturation)	Disturbance Stage (79%–70% O ₂ saturation)	Critical Stage (69%–60% O ₂ saturation)
Altitude (thousands of feet)	0–10	10–15	15–20	20–25
Symptoms	Decrease in night vision	Drowsiness Poor judgment Impaired coordination Impaired efficiency	Impaired flight control Impaired handwriting Impaired speech Decreased coordination Impaired vision Decreased sensation to pain Impaired intellectual function Decreased memory Impaired judgment	Circulatory failure CNS failure Convulsions Cardiovascular collapse Death

Mining industry

Slight increased breathing effort
Flame lamp goes out
Emotional upset, impaired judgement, faulty coordination
Vomiting, cardiac ischemia
Unconsciousness & death

Apart from hypercapnia.... Will hypoxia alone cause hyperpnoea?

Hypoxic drive

ODC ? Rightward shift

Putting it all together

	sPO ₂	arterial PO ₂	vol % inspired gas
minimal operational	80%	45 mmHg	14
survival	60%	35 mmHg	10

h

VO ₂ = 400 ml/min crew: 50 oxygen usage: 20 L/min = 1200 L/h	
air volume inside sub: 1200 M ³ = 12 252.000 L O ₂	.00.000L air =
21% O ₂ : 252.000 L O ₂ / 1200.000 L a 14% O ₂ : 168.000 L O ₂ / 1200.000 L a 10% O ₂ : 120.000 L O ₂ / 1200.000 L a	ir
252.000 – 168.000 = 84.000 L used	70 h

110 h

252.000 – 120.000 = 132.000 L used

How about CO_2 ?

Composition of Dry Air in the Lower Atmosphere of Earth

Major constituents of dry air, by volume[6]						
Gas			Volume ^(A)			
Name	Formula		in <u>ppmv</u> ^(B)	in <u>%</u>		
Nitrogen	N ₂		780,840	78.084		
Oxygen	0 ₂		209,460	20.946		
Argon	Ar		9,340	0.9340		
Carbon dioxide	CO ₂		397	0.0397		
Neon	Ne		18.18	0.001818		
<u>Helium</u>	Не		5.24	0.000524		
<u>Methane</u>	CH ₄		1.79	0.000179		
No	Not included in above dry atmosphere:					
Water vapor ^(C)	H ₂ O 10–50,000 ^(D) 0.001%–5% ^(D)					
 notes: ^(A) volume fraction is equal to mole fraction for ideal gas only, also see volume (thermodynamics) ^(B) ppmv: parts per million by volume ^(C) Water vapor is about 0.25% by mass over full atmosphere ^(D) Water vapor strongly varies locally^[4] 						

How about the climate hype?

Clinical effects of hypercapnia

organ	physiology	symptoms	threshold
CNS	Vasodilation CBF个 CBV个	headache	
		narcosis	> 90 mmHg (12 kPa)
ventilation	setpoint	hyperventilation	Max stimulation at paCO ₂ 100 mmHg
circulation	Sympathic drive个 (also direct depressant effect)	Hypertension arrhythmias	
All organs	vasodilation	Flushed skin	

PaCO₂ & oxygenation

PaCO₂ & CBF

Why the headache?

Central chemoreceptor

Copyright © 2009 Pearson Education, Inc.

PaCO₂ & ventilatory drive

PaCO₂ & ventilatory drive

PaCO₂ & catecholamines

Hypercapnia during apnoe oxygenation in dogs

PaCO₂ & circulation

Symptoms of carbon dioxide toxicity

How high can you go?

	Volume %
Evacuate sub	2%
lethal	10%

Hypercapnia

- endogenous: increase PaCO₂ 3-6 mmHg/ min (0.4-0.8 kPa/min
- exogenous: very rapid increase!
 - metabolic compensation takes time!
 - how long?
- carbogen

present use: to increase ophthalmic artery bloodflow

carbogen: 5% CO₂ & 95% O₂ Medunas mixture: 30% CO₂ & 70% O₂

Carbon dioxide as an anaesthetic

1824 Henry Hill Hickman 1928 Leake and Waters

CO₂ 30%: anesthesia and an isoelectric ECG but complicated by frequent convulsions! still used for anesthesia of lab animals!

Alteration intracellular ph

Grotto del cane

Cave is 10 m long Volcanic release of CO₂ 1 meter high CO₂ layer (near ground)

Putting it all together

Maximum	CO ₂ vol % in air	
operational conditions	2	
survival conditions	10	

 CO_2 produced pp = 400 x 0.8 = 320 ml/min Crew: 50 Total CO_2 production : 16 L/min = 960 L/h

Air volume inside sub: 1200 M^3 = 1200.000L air CO_2 content fresh air: 0

2 % CO₂: 2 x 12.000 = 24.000 L CO₂ 10% CO₂: 10 x 12.000 = 120.000 L CO₂

24.000 : 960 =	25 h
120.000 : 960 =	125 h

Breathing in an enclosed space

Carbon dioxide elimination

- surfacing
- scrubber
- regenerative CO₂ removal system

Oxygen supply

- surfacing
- electrolysis
- oxygen candle

Electrolysis

Oxygen candle

- needs activation
- "burns" at 600°C
- 15 minutes
- lithium perchlorate or sodium chlorate
- 2NaClO₃ + 2Fe -> 2O₂ + 2NaCl + 2FeO

http://www.faa.gov/pilots/safety/pilotsafetybrochures/media/Oxygen_Equipment.pdf

Carbon dioxide absorption

The overall reaction is:

 $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O + heat$ (in the presence of water)

The reaction can be considered as a strong-base-catalysed, water-facilitated reaction.

Mechanism:

1) $CO_2 \rightarrow CO_{2 (aq)}$ (CO_2 dissolves in water - slow and rate-determining)

2) $CO_{2 (aq)} + NaOH \rightarrow NaHCO_{3}$ (bicarbonate formation at high pH)

3) $NaHCO_3 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O + NaOH$

- (NaOH recycled to step 2) hence a catalyst)
- Each mole of CO₂ (44 g) reacted produces one mole of water (18 g).

	sodalime	baralyme	litolyme
catalyst	3% NaOH 1% KOH	20% BaOH	
СаОН	75%	80%	
H ₂ O	20%		
capacity	110-150 L/kg		450L/kg
advantage			Less weight

Lithium hydroxide

Lithium hydroxide (LiOH)

- 2 LiOH(s) + 2 $H_2O(g) \rightarrow 2 \text{ LiOH}.H_2O(s)$
- 2 LiOH.H₂O(s) + CO₂(g) \rightarrow Li₂CO₃(s) + 3 H₂O(g)
- The net reaction being:
- 2 LiOH(s) + CO₂(g) \rightarrow Li₂CO₃(s) + H₂O(g)
- advantages: higher capacity on a weight base

Lithium peroxide (Li₂O₂):

- $2 \operatorname{Li}_2 \operatorname{O}_2 + 2 \operatorname{CO}_2 \rightarrow 2 \operatorname{Li}_2 \operatorname{CO}_3 + \operatorname{O}_2$
- advantages: even higher CO₂ absorbent capacity + oxygen production
- used in spacecrafts

scubber exhaustion

Indicator not useful in enclosed canister sytems!

- Time based scrubber change
- CO_2 % in air
- CaCO₃ formation produces heat
- Temperature monitoring

CO₂ analyzer

Dwyer CO₂ analyzer WWII

Absorber time left...?

Houston we have a problem......

Lithium Hydroxide (LiOH) Canister, Apollo Command Module, Block II improvised for use in the LM

PRIMARY CARTRIDGE

Submarine scrubber capacity?

Suppose we want to extend dive time 4 days = 96 h = 384 kg

But this assumes 100% efficiency! In reality you probably need twice as much

20 kg drums x 19 limited storage inside a submarine!

Regenerative carbon dioxide removal system

$$\begin{array}{ccc}H & H & H \\ N - C - C - OH \\ H & H & H\end{array}$$

monoethanol-amine (MEA)

The end.....

Slides available at www.mattijnb.nl