Volatile Organic Compounds (VOC) interaction with high and low temperature carbon monoxide/hydrogen oxidation catalysts

Gareth Toft and Charles Cummings

Chemistry (Atmospheres) Team, QinetiQ Haslar

Tina Goodall

Submarine Delivery Agency

November 2019

Contents

- 1 Introduction by Tina Goodall
- 2 VOC removal by high temperature catalyst
- 3 VOC exposure to low temperature catalyst
- 4 Conclusions

Introduction

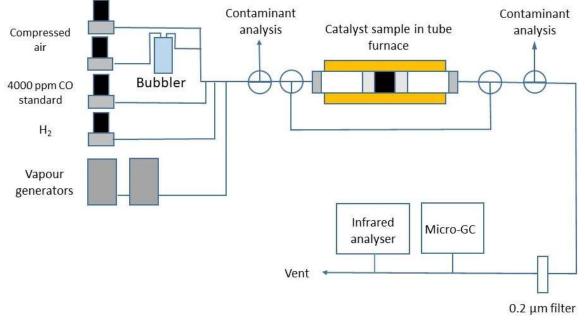
Under its duty of care, the UK Ministry of Defence (MoD) must ensure that Royal Navy (RN) submarines maintain a safe breathable atmosphere.

The submarines atmosphere is consistently monitored and controlled within set exposure reference values (detailed in the UK restricted publication BR1326 - Book of Reference for Submarine Atmosphere Control)

The UK have (for the last twelve years, run a contract with QinetiQ (QQ) to provide scientific support to atmosphere control under the Maritime Strategic Capability Agreement (MSCA)

Submarine Delivery Agency

The MoD tasked QinetiQ under this contract to evaluate the potential use of preidentified precious metal catalysts for low temperature CO / H_2 removal and subsequent VOC removal This work is reported further in this paper


VOC removal by high temperature catalysts

High temperature catalyst - Experimental

- Burners use Moleculite catalyst
 - Copper oxide/manganese dioxide at >200 °C
- Contribution of high temperature CO/H₂ burner CO/H₂ burner
- VOC drawn from literature
 - 2-Butanone 2.1 ppm
 - Benzene 2.5 ppm
 - Decane 1.4 ppm
 - 1,2,3-trimethylbenzene 4.2 ppm
 - Acetophenone 3.0 ppm
 - Naphthalene 1.3 ppm
- Test gas contained 6 ppm CO and 0.5 $\%~{\rm H_2}$
- Tedlar bag samples analysed by TD/GC/MS

Experimental apparatus

High temperature catalyst – VOC removal results

VOC	Inlet concentration (ppm)	Outlet concentration (ppm)	Percentage removal (%)
2-Butanone	1.148	0.023	98
Benzene	0.895	0.474	47
Decane	0.251	0.073	71
1,2,3-trimethylbenzne	0.081	0.015	82
Acetophenone	0.031	0.006	81
Naphthalene	0.012	0.003	75
		Average VOC removal	76

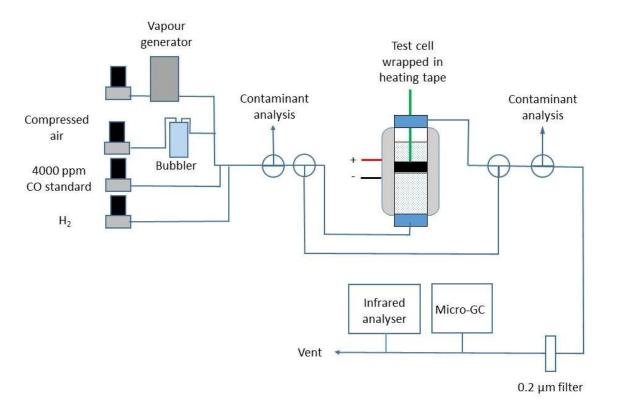
Measured concentrations lower than that calculated from diffusion tube weight loss
– Possible loss to apparatus

• Overall removal efficiency in close agreement to 70-80 % removal results of minor trial

High temperature catalyst – Effect of hydrogen

VOC	Percentage removal (%)			
	0.0 % H ₂	0.5 % H ₂	1.8 % H ₂	
2-Butanone	79	80	76	
Benzene	46	26	25	
Decane	66	65	55	
1,2,3-trimethylbenzne	71	77	72	
Acetophenone	72	79	79	
Naphthalene	68	71	-	
Average VOC removal	67	66	61	

- VOC not affected by presence of hydrogen
- No partial breakdown products found by TD/GC/MS analysis


VOC exposure to low temperature catalysts

Low temperature catalyst - Experimental

- Johnson-Matthey catalysts dual bed
 - Q1 palladium on iron oxide
 - Q3 platinum on titanium dioxide
 - Catalysts operated at 100 °C
- Effect of VOC on CO and H_2 oxidation
- Classes of VOC drawn from literature
 - Alcohols
 - Alkanes
 - Aromatics
 - Aldehydes and ketones
 - Chlorinated compounds
 - Siloxanes
 - Hydrogen sulfide
 - Ammonia
- Exposed for up to 7 days
- Analysis using FTIR and TD/GC/MS

Experimental apparatus

Low temperature catalyst - VOC

VOC Group	VOC	Exposure duration (h)	Inlet concentration (ppm)		
	Methanol		1.90		
Alcohols	Ethanol	168	0.99		
	Butanol		1.56		
Alkanes	Decane	168	0.36		
Airdiles	Nonane		0.	0.82	
	Toluene		2.25		
Aromatics	Ethyl-benzene	168	0.55		
	P-xylene		0.	78	
			Low temp.	High temp.	
Aldehydes and ketones	Butan-2-one		33.2	-	
Aldenydes and ketones	Benzaldehyde	96	0.43	0.65	
	Acetophenone		0.14	0.36	
	1,1,1-Tricholorethane		0.25		
Chlorinated compounds	1,1,1-Trichloroethylene	168	0.11		
	Tetrachloroethane		0.07		
	Hexamethylcyclotrisiloxane		0.25		
Siloxanes	Octamethylcyclotetrasiloxane	168	0.11		
	Decamethylcyclopentasiloxane		0.07		
Hydrogen sulfide		21	0.05		
Ammonia	Test 1	7	1.80		
	Test 2	14	3.10		

Low temperature catalyst – Effect on oxidation performance

	Average removal (%)				
VOC	Pre-exp	osure	Post-exposure		
	CO (%)	H ₂ (%)	CO (%)	H ₂ (%)	
Alcohols	98.4	100.0	100.0	100.0	
Alkanes	100.0	100.0	100.0	100.0	
Aromatics	100.0	99.3	99.9	100.0	
Aldehydes and ketones	99.4	97.3	99.5	98.1	
Chlorinated compounds	100.0	96.0	100.0	100.0	
Siloxanes	98.3	95.0	100.0	88.4	
Hydrogen sulfide	99.3	95.5	100.0	100.0	
Ammonia (Test 1)	100.0	100.0	100.0	43.9	
Ammonia (Test 2)	100.0	100.0	100.0	100.0	

• Catalysts affected by siloxanes and, in one case, ammonia

Low temperature catalyst – VOC removal

VOC	Outlet (ppm)	Removal (%)	VOC Outlet (ppm)		Removal (%)
Methanol	0.00	100.0	Acetophenone	<0.01	97.4
Ethanol	0.00	100.0	1,1,1-Tricholorethane	1.84	62.7
Butanol	0.00	100.0	1,1,1-Trichloroethylene	0.03	97.4
Decane	<0.01	97.2	Tetrachloroethane	<0.01	93.8
Nonane	<0.01	98.8	Hexamethyltricyclosiloxane	0.13	48.0
Toluene	0.24	89.3	Octamethylcyclotetrasiloxane	0.08	27.3
Ethyl-benzene	0.04	92.7	Decamethylcyclopentasiloxane	<0.01	85.7
p-Xylene	0.12	84.6	Hydrogen sulfide	0.00	100.0
Butan-2-one	0.40	98.8	Ammonia	0.57	81.6
Benzaldehyde	<0.01	98.5	Average VOC removal		78.5

• No partial breakdown products found in TD/GC/MS samples

16 SUBMARINE ATMOSPHERE MONITORING AND PURIFICATION SYMPOSIUM 2019

Conclusions

High temperature catalyst

- The high-temperature catalyst oxidised most VOC.
- Average total VOC removal of the six test compounds was 61 76 %.
- CO/H₂ burner does make a measurable contribution to controlling VOC in the atmosphere on RN submarines.

Low temperature catalyst

- Low temperature catalysts unaffected by the majority of submarine atmosphere contaminants.
- Siloxanes had the largest effect, but the effect was reversible over time.
- The catalysts had an average VOC removal of 78.5 %
- This secondary function of VOC removal would not be lost in a low-temperature precious metal burner.

Acknowledgements

Charles Cummings and Tim Taylor

UK MOD atmosphere control stakeholders

Chemistry (Atmospheres) Team

This work was undertaken as part of the Maritime Strategic Capability Agreement between the Naval Authority Group and QinetiQ

Any questions

Submarine Delivery Agency

