

Australian Government

Department of Defence Science and Technology

Contaminant Detection in the Submarine Environment

Michael Leist

Commercial in confidence

DST s

Science and Technology for Safeguarding Australia

Carbon Monoxide

Contaminant Detection in the Submarine Environment

Commercial in confidence

Submarine Atmosphere Contaminant Detection

Real time instrumentation

- Distributed Sensor Network
 - Sensors distributed throughout the submarine
- Sensors must satisfy analytical requirements
 - Limits of Detection
 - Accurate
 - Free from cross sensitivities
 - Robust and reliable
 - Maintenance / boat schedules

Commercial in confidence

3 ****************

Submarine Atmosphere Contaminant Detection

Is it feasible to use low cost EC sensors to monitor toxic gases in a submarine?

Commercial in confidence

H• **H**•

4

Science and Technology for Safeguarding Australia

Submarine Atmosphere Contaminant Detection

- DST Prototype Tunable Diode Laser (TDL), Carbon Monoxide
- SAMAP 2015
 - Permanent mounting or portable use
 - Light weight, battery or boat power
 - Sensitivity, Stability, Selectivity,

Submarine Atmosphere Contaminant Detection

- DST TDL Continual Development of the Instrument
 - Software/firmware modifications
 - Improved stability
 - Changes made to the TDL
 - Improving the longevity of the air intake pumps
 - Protection of the instrument from the Submarine environment

Commercial in confidence

Submarine Atmosphere Contaminant Detection

Commercial in confidence

7

Science and Technology for Safeguarding Australia

Submarine Atmosphere Contaminant Detection

- DST TDL Compared with COTS options
 - Laser Based Instrument
 - Nondispersive Infrared (NDIR)
- COTS options are;
 - Less flexible
 - Boat Power Only,
 - Higher Power Consumption,
 - Larger Footprint

Commercial in confidence

8

Submarine Atmosphere Contaminant Detection

Commercial in confidence

9

Science and Technology for Safeguarding Australia

Submarine Atmosphere Contaminant Detection

Submarine Atmosphere Contaminant Detection

DST TDL

Commercial in confidence

COTS Laser Instrument

Particulate screen filter on air cooling A = Clean, B = \sim 20 days

11 **DST**

Diesel Exposure Assessment

Submarine Atmosphere Contaminant Detection

Commercial in confidence

Submarine Atmosphere Contaminant Detection

- **Diesel Exhaust has two fractions**
 - Gaseous & vapors
 - Major Components (99%) N₂, O₂, CO₂ & H₂O
 - Minor Components (1%) CO, NOx, SO₂
 - Particulate (DPM)
 - DPM = (Organic Carbon, OC) + (Elemental Carbon, EC) + Minerals

Submarine Atmosphere Contaminant Detection

- Elemental Carbon (EC)
 - Often used as a surrogate for DPM
 - Provides the best fingerprint for diesel exhaust
 - Relatively free of interferences
 - Chemically stable.
- EC/TC can vary dramatically depending on ending load, tuning, fuel etc.
- Organic carbon (OC) is not used as a DPM surrogate because other sources of OC (e.g., cigarette smoke)

Commercial in confidence

Submarine Atmosphere Contaminant Detection

- Currently no law in Australia governing DPM exposure
- SAFEWORK Australia yet to release industry standard
 - Exposure Standards currently under review
- AIOH recommendation (2004) 0.1 mg/m³ EC
- NSW Mines (2006) 0.1 mg/m³ EC
- WA Draft Guideline (2013) 0.1 mg/m³ EC

Commercial in confidence

- NIOSH method 5040 (measurement of EC)
 - A pump is used to draw air through a particle size selector and onto a quartz filter
- Downside of NIOSH 5040
 - Not real time, no feedback to crew
 - Crew involvement in the sampling process
 - Risk of sample degradation or contamination prior to analysis
 - Provides averaged result

NIOSH 5040 - Thermal-optical analysis

DST

Submarine Atmosphere Contaminant Detection

- Airtec Instrument
 - real time DPM (EC)
 - Air drawn into instrument using a diaphragm pump
 - Submircon particles collected on a filter
 - Laser illuminates the filter
 - As DPM particulates accumulate the lasers transmittance decreases

External Cyclone (2) is used with the Airtec instrument and connected conductive tubing (1)

Commercial in confidence

- Elemental Carbon
 - Method NIOSH 5040 versus Airtec (Realtime)
 - Results obtained from NIOSH 5040 and Airtec are similar

Submarine Atmosphere Contaminant Detection

- Aerosol monitors
 - Not calibrated for DPM
 - Typically Arizona Road Dust or A1 Test Dust
 - DPM has significantly different light scattering properties than of test aerosol
 - A light scattering photometric instrument response will not agree with DPM specific methods

Submarine Atmosphere Contaminant Detection

- Aerosol Monitors Personal DataRam
 - Real time aerosol monitor
 - Passive sampler
 - Measures light scattering
 - No cyclone or filter

Submarine Atmosphere Contaminant Detection

Submarine Atmosphere Contaminant Detection

Dustrak (Aerosols)

Date

Custom calibration factors used in conjunction with PM1 impactors can improve instrument response

Commercial in confidence

Submarine Atmosphere Contaminant Detection

 Even if we detect EC accurately in the submarine atmosphere...

Are we capturing all potential risks sufficiently?

- Nanoparticle exposure
 - Does low EC guarantee low nanoparticle measurements, Answer = NO

Commercial in confidence

Commercial in confidence

