

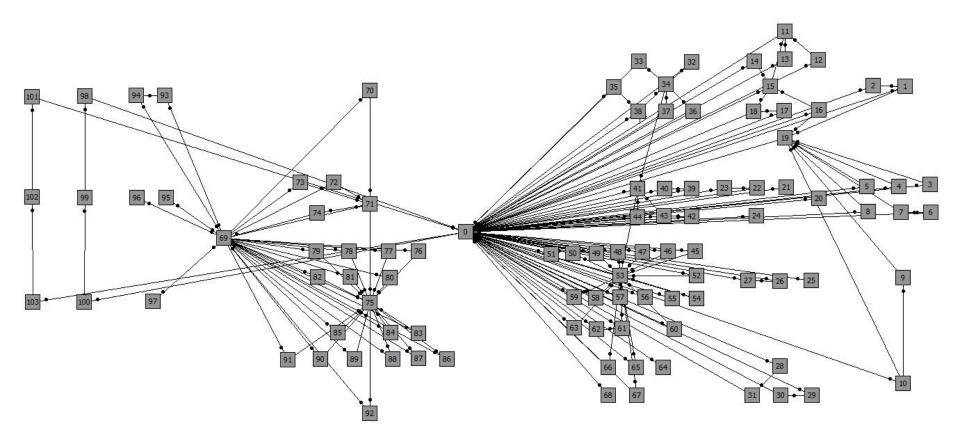
BREATH computer modelling of submarine atmosphere purge regimes

Gareth Toft and Tim Taylor SAMAP 2015 5 – 9 October 2015

Introduction

- Snorkel first trialled on Dutch submarines late 1930's
- The running of diesel generators on submerged submarines has always been a potentially hazardous operation
- Exhaust gases contain toxic levels of carbon monoxide (CO)
- Potential exposure routes:
 - Leaks from exhaust
 - Re-ingestion of exhaust plume through Snort Induction Mast
- Operation of the Snort Induction Mast (SIM) corresponds Royal Navy Vent State Blue
- Computer simulation of potential faults during Vent State Blue

Archive photo of Dutch HMS Sälen (the Seal) snorting.



BREATH computer model

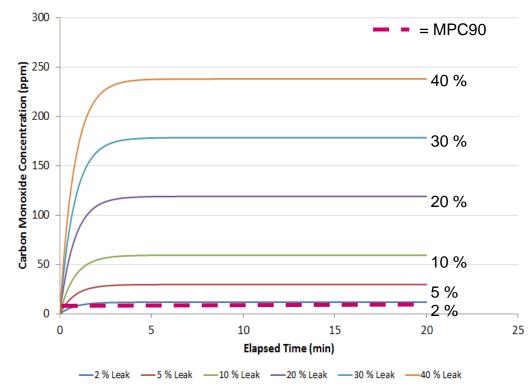
- BREATH modelling software was developed jointly by QinetiQ and the Buildings Research Establishment (BRE), but now wholly QinetiQ proprietary
- Underlying mathematical function that drives BREATH is a fourth order Runge-Kutta method
- Validated through practical experiments
 - Small scale using plastic boxes, tubing and carbon dioxide
 - Large scale using building ventilation system and refrigerant gas
- Model uses breathable volumes, ventilation system architecture and ventilation flow rates that are drawn from submarine design specifications
- Inputs include initial contaminant concentrations, production and removal rates

BREATH architecture – From this...

BREATH architecture – To this...

Impact of diesel exhaust leaks - 1

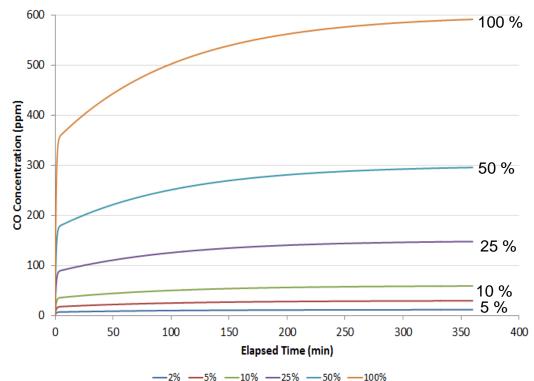
- 200 to 600 ppm CO in diesel exhaust
- Diesel Generators (DG) produce 100 l.min⁻¹ of CO
- 6 different exhaust leakage rates modelled, 5 – 40 %
- Leaks greater than 50 % considered unlikely


Exhaust leakage rate (%)	Volumetric exhaust leakage rate (m³⋅min⁻¹)	Volumetric Carbon Monoxide Leakage Rate (I.min ⁻¹)
2	3.4	2
5	8.4	5
10	6.8	10
20	33.6	20
30	50.4	30
40	67.2	40

Diesel exhaust and CO leakage rates

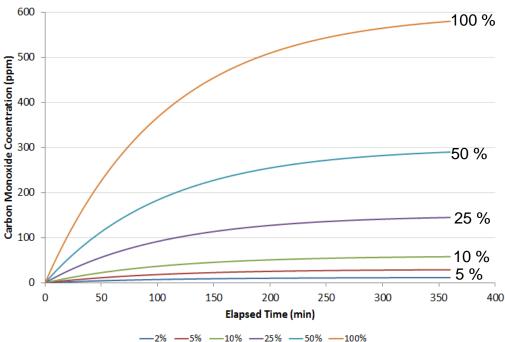
Impact of diesel exhaust leaks - 2

- CO levels rise very quickly in DG compartment
- Even a leak rate of 2 % will breach Royal Navy Maximum Permissible Concentrations (MPC) within 3 min
- Insufficient time for the Central Atmosphere Monitoring System (CAMS) to respond



Modelled effect of Diesel exhaust leakage on DG Compartment CO concentrations

Impact of exhaust re-ingestion – DG Compartment


- BREATH configured so that air entering via the SIM contained CO
- Worst case 100 % re-ingestion gives
 600 ppm CO in the inlet
- Rapid rise due to initial re-ingestion
- Slower rise due to build of CO in the rest of the submarine's atmosphere
- Re-ingestion rate of >10 % can breach MPC limits in less than 3 min
- Again, insufficient time for the CAMS to respond

Increase in DG Compartment CO concentration for different degrees of exhaust plume re-ingestion

Impact of exhaust re-ingestion – Whole boat

6	Re-	Induced	Time taken to breach MPC value (min)		
	ingestion (%)	CO conc. (ppm)	MPC ₉₀ (6 ppm)	MPC ₂₄ (60 ppm)	MPC ₆₀ (175 ppm)
	2	12	-	-	-
	5	30	54	-	-
	10	60	24	-	-
	25	150	9	54	-
	50	300	4	24	93
,	100	600	2	12	37

'Whole boat' times taken to breach CO MPC values

- BREATH simplified rest of submarine as a single "whole boat" compartment
- Slower rises in CO due to larger volume
- Longer times allows CAMS to detect CO increases and raise the alarm

Conclusions

- Both leaks and exhaust re-ingestion can result in CO concentrations in the DG compartment that breach safety levels with minutes
- CAMS cannot respond in sufficient time to provide warning

Recommendations

- Install a rapid response real-time CO monitor into the DG compartment
- Modify ventilation arrangement of Vent State Blue to reduce risk of CO exposure

