UNCLASSIFIED

Australian Government

Department of Defence Defence Science and Technology Group

Polycyclic Aromatic Hydrocarbon (PAH) emissions from diesel exhausts: A review

Michael Leist

Why are we interested in PAHs? Why the review?

- Polycyclic Aromatic Hydrocarbons
 - Air pollutant

...

- Potential for exposure on both the surface and sub surface fleet of the RAN
- Review assists with identifying;
 - Increasing knowledge of PAHs
 - Likelihood of exposure
 - Techniques/procedures that may assist with reducing PAH exposure
 - Analysis techniques

 PAHs all have a similar structure – Aromatic rings consisting of carbon and hydrogen

- There are over 100 different PAHs, as well as..
 - Nitro PAHs
 - Nitrated PAHs
 - Reaction of PAHs with atmospheric oxidants
 - Potential mutagens and carcinogens
 - Up to 45 have been identified in diesel exhaust
 - Emissions of nitro PAHs are typically at least an order of magnitude lower than PAHs
 - Oxy PAHs
 - Oxygenated PAHs
 - Semi-volatile

•

• Many directly toxic and mutagenic

- Why are we interested in PAHs
 - Health Effects
 - Irritation to the eyes, throat and bronchial tubes
 - PAHs have been classified as carcinogens;
 - Group 1 carcinogens (known human carcinogen)
 - Group 2A (probably human carcinogen)
 - Group 2B (possible human carcinogen)
 - Group 3 (not classifiable due to insufficient information)

- PAHs are most commonly produced during the incomplete burning of organic substances.
 - Burning of wood and biomass
 - Waste incineration
 - Tobacco smoke
 - Coal tar products
 - Engine emissions

...

PAHs – Diesel exhaust emissions

- Why are PAHs present in diesel exhaust emissions?
- PAHs produced from the combustion of diesel fuel
 - Creation of PAHs
 - Non PAH, aromatic, non-aromatic fuel components
 - Contributions from lubricating oil
 - Entrainment from the exhaust system
 - Exhaust may act as a source or sink for PAHs
- PAHs can be present in Diesel fuel
 - Survive the combustion process
 - Vary for each PAH

•

Influenced by engine design

PAHs present in diesel fuel

þ.

....

÷

÷

ŀ

8

ŀ

....

.

.

÷

....

÷

÷

ŀ

DST GROUP

ŀ

Science and Technology for Safeguarding Australia

- The emission profiles of PAHs vary between sources
 - Source fingerprint (chemical signature)
- Diesel emissions contain elevated concentrations of methylated naphthalene's and methylated phenanthrene isomers
 - Enrichment of benzo[a]anthracene and benzo[a]pyrene

PAHs – Maritime Diesel Engine Emissions

- **Maritime Emissions**
 - Naphthalene
 - 2-Methyl-naphthalene
 - 1-Methyl-naphthalene
 - 2,6-Dimethyl-napthalene
 - 2,3,5-Trimethyl-napthalene
 - Phenanthrene
 - 1-Methyl-phenanthrene

DST GROUP Science and Technology for Safeguarding Australia

UNCLASSIFIED

Polycyclic Aromatic Hydrocarbons (PAHs)

Collins Class Submarines

11

- Swab samples by Hanhela et al identified dimethylnaphthalene isomers
 - 1-Methylnaphthalene, 2-Methylnapthalene

PAHs - Collins Class Submarines

Complications in characterising PAHs present in diesel exhaust emissions

- Many parameters can influence diesel PAH exhaust emissions
 - Engine size
 - Operating conditions
 - Maintenance

∷∙

- Engine technology
- Fuel composition
 - Reduction in
 - aromatic content
 - sulphur content

Complications in characterising PAHs present in diesel exhaust emissions

- The number and types of PAHs investigated often differs
- No workplace exposure limits for many PAHs
 - little regulatory guidance as to what PAHs to monitor
 - Naphthalene only PAH with an exposure limit air (Aust.)
 - Benzo[a]pyrene only PAH with an aqueous exposure limit (Aust.)
 - Biomarkers used to determine PAH exposure
 - Metabolite of Pyrene, 1-hydroxypyrene (1-HP)

UNCLASSIFIED

Complications in characterising PAHs present in diesel exhaust emissions

- United States Environmental Protection Agency (EPA)
 - Classified 16 PAHs as priority pollutants

÷

....

...

...

...

÷

- Toxicity
- Human exposure

Complications in characterising PAHs present in diesel exhaust emissions

Lack of maritime specific research

Engine and exhaust after treatment systems

Diesel Particulate Filters (DPFs)

- Not designed for a reduction in PAH emissions
 - Nitrogen Oxides
 - Particulate Matter

÷

- Comprised of a large number of parallel channels
- Channels are alternatively open and closed
- The exhaust gas is forced to flow through the porous walls of the honeycomb structure

Diesel Particulate Filters (DPFs)

 Can assist in reducing PAH emissions by a factor of 3 to 4

DST Science and Technology for Safeguarding Australia

- Some evidence that DPFs can act as a reaction chamber for nitration of PAHs
 - Nitration of pyrene and benzo(a)pyrene

Biodiesel

- RAN has not set any biodiesel targets
- US Navy aims to generate 50% of its energy from alternative sources, including biofuels by 2020

Biofuels are included in latest U.S. Navy fuel procurement

Note: Above, clockwise from left: Fleet replenishment oiler USNS Henry J. Kaiser (T-AO 187), aircraft carrier USS Nimitz (CVN 68), destroyer USS Chung-Hoon (DDG 93), and cruiser USS Princeton (CG 59). Great Green Fleet demonstration, July

Biodiesel

- Biodiesel feedstocks can include
 - Canola oil
 - Palm oil
 - Coconut oil
 - Animal fats
- Biofuels can be added (blended) with conventional diesel fuel at varying percentages
- Biofuel can have significant changes to viscosity and the cetane number

DST Science and Technology for Safeguarding Australia

Biodiesel

- Biodiesel can produce a reduction in PAH emissions
 - > 80% achievable
 - Nitro PAHs can also be reduced
- Highly dependent upon the type of biofuel feedstock used and the percentage at which it is added to conventional diesel
 - Reduced reduction in all PAHs
 - Enhancement of some PAHs (Phenanthrene, Anthracene)
 - Oxy PAHs increase

Summary

- Maritime emissions dominated by lower molecular weight PAHs
- Engine after treatment technologies typically reduce, however not eliminate PAHs
- Biodiesels, can result in mixed results
 - Biodiesel feedstock
 - Blending percentage with conventional fuel

Science and Technology for Safeguarding Australia