KEY DEVELOPMENTS IN SUBMARINE AIR MONITORING AND AIR PURIFICATION DURING THE PAST 20 YEARS

W. Mazurek

SAMAP Conferences

 1994 Adelaide, Australia 	1 st
 1997 Portsmouth, UK 	2 nd
 2000 Toronto, Canada 	3 rd
 2003 Emden, Germany 	4 th
 2005 Uncasville, CT., USA 	5 th
 2007 Amsterdam, Netherlands 	6 th
 2009 San Diego, USA 	7 th
 2011 Taranto, Italy 	8 th
 2013 New Orleans, USA 	9 th
 2015 Den Helder, Netherlands 	10^{th}

- Air Monitoring:
 - Colorimetric Tubes (eg. Drager)
- Air Purification:
 - Carbon Dioxide Absorption Unit (CDAU) Soda Lime
 - Oxygen Candles
 - CO/H₂ Burner (oxidation catalyst) Pd/Al₂O₃

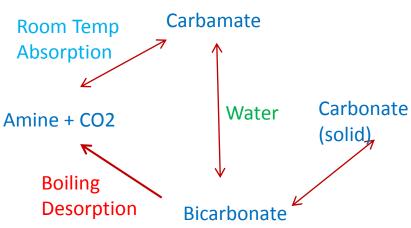
CO/H2 Burner

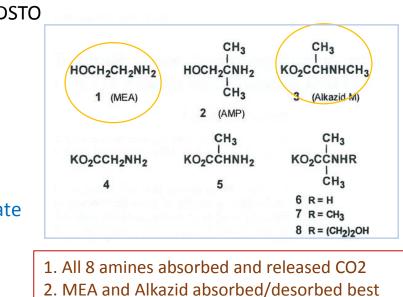
Nuclear-Powered Submarines 1970s

- Air Monitoring
 - Central Atmosphere Monitoring System (Mass Spectrometer)
 - IR CO monitor
- Air Purification
 - Regenerative CO₂ Removal (Amine Scrubber, Molecular Sieves)
 - Non-Regenerative (soda lime, lithium hydroxide)
 - Electrolyser (O₂)
 - High Temperature CO/H₂ Burner
 - Charcoal Filter
 - Electrostatic precipitator (aerosols)

REGENERATIVE CO₂ REMOVAL

- Much interest in regenerative CO2 removal
- Mostly for nuclear-powered submarines but also for AIP
- Move away from current MEA scrubber for CO2


CONCERNS ABOUT MEA (MonoEthanolAmine) SCRUBBER


- Initially adapted for nuclear-powered submarines from industrial applications
- What is driving research on regenerative CO2 removal
- Toxicity MEA
 - Exposure Limit: 0.5 ppm air concentration
 - Fugitive emissions from the MEA scrubber
- Agricultural design
 - Operator training required
 - Monitoring solution concentrations

Regenerative CO₂ Scrubber (MEA)

Is MEA the best choice ?

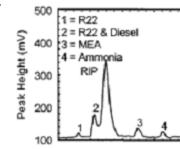
- Installed on RAN COLLINS class submarines and Japanese Soryū class AIP submarines
 - adapted from RN nuclear-powered submarines
 - Reaction Mechanisms Robert Hook, DSTO Ind. Eng. Chem. Res. 1997, 36, 1779–1790

3. All formed precipitates except MEA and Alkazid

4. 7&8 are not suited to working at low CO2 levels

MEA Emissions

• Monitoring:


- Colorimetric tubes (real-time) not specific to MEA
- Absorption into acid soln retrospective anal,
- **IMS** Gan (DSTO), Corino (CSIRO), "Selective detection of alkanolamine vapors by ion mobility spectrometry with ketone reagent gases". <u>Anal Chem.</u> 2000 Feb 15;72(4):807-15.
- Conc of interest 0.5 ppm

Sea trial for MEA monitor

H R Bollan, J L Brokenshire and M H Lunn, SAMAP 2000

"The Development and Sea Trials of Prototype Fixed-Point and Portable Ion Mobility Spectrometers for Monitoring Monoethanolamine on board Submarines"

Long-term stability > 8 months
 Appropriate dynamic range
 Good response time
 Concentrations of up to 2.5 ppm found during sea trials

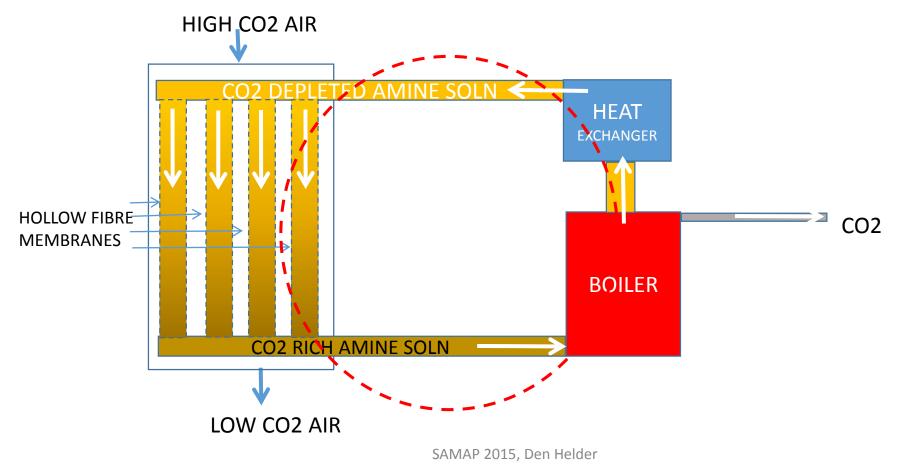
MOD (UK)

Acknowledged Leaders in Vapour Detection Product Specification for MEA

Reduction in Amine and Ammonia Emissions from the MEA Scrubber

- Tony Aitchison, Submarine Atmospheres Group, Maritime Platforms and Equipment, QinetiQ Sea, Haslar, Gosport, SAMAP 2005.
- Investigation of filter materials in the air outlet from the MEA scrubber, MEA $MPC_{90} = 0.5$ vppm
 - 3 impregnated activated carbons produced by different manufacturers
 - natural zeolite
 - macroporous Ion Exchange Resin
 - existing Ion Exchange filter
- Tests were performed in the <u>laboratory</u> by passing humidified air through MEA and through an absorption test bed containing the filters under investigation. <u>Monitoring</u> was by Drager ammonia tubes (no discrimination between ammonia and MEA)
- Macroporous Ion Exchange Resin (Puralite MN500)
 - Significant improvement in MEA /ammonia retention
 - Double absorption capacity
 - Higher cost

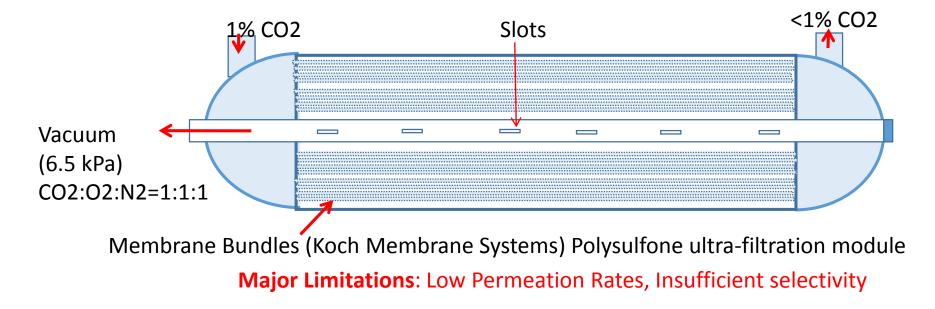
Other Sources of MEA Leaks from the MEA Scrubber


- MEA solution penetrates pump seals, this has been overcome with the use of
 - Fix:
 - Magnetically coupled pumps
 - Immersion pumps
- Carry-over of MEA into the CO₂ compressor causes fouling of the compressor lubricating oil, leading to compressor failure. This is only a hazard in the sense that it disables the scrubber.
 - Fix: Larger capacity compressor oil sump and regular oil changes .
- Transfer of MEA from container to scrubber can lead to spillage.
 - Fix: Liquid transfer system

Regenerative CO2 Membrane Scrubber

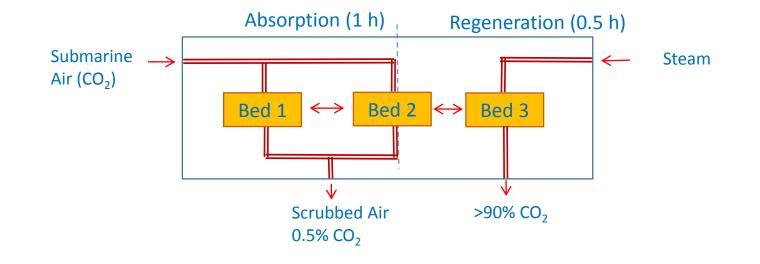
Martin Jensen, et al. Netherlands, RNLN, SAMAP 2003, 2005

- 1. A hollow fibre membrane separates CO₂ laden air and amine solution
- 2. CO_2 passes through the membrane and reacts with the amine
- 3. The CO_2 rich amine (carbamate) passes into a boiler where the CO_2 is liberated.
- ADVANTAGE: NO EXPOSURE OF AMINE TO AIR


DISSADVANTAGE: REQUIRES DEMINERALISED WATER

Hollow Fibre Membrane CO₂ Removal Amine-Facilitated Transport

- A Hedley, S Earwicker DERA, UK, 1990s in collaboration with University of Twente, The Netherlands
- Technology Demonstrator: Wellman Defence Plc, G Toft, S Cassidy and Mark Lund "Supported Liquid Membranes for Carbon Dioxide Removal from Submarine Atmospheres: Experiences with a Technology Demonstrator" 31st International Conference on Environmental Systems, Orlando Florida, July 9-12, 2001


(1) Amine absorbed into the membrane from aqueous soln;(2) Excess removed by vacuum(3) 1% CO2 introduced fibre bore(3) Vacuum applied to the outer side of the fibre

Regenerative Solid Amine CO2 Scrubber

Ion Exchange Resin

- Lutz Schauer and Hans-Christian Spetzler, Dornier GmbH (now EADS) <u>SAMAP 94</u>; W Raatschen, A Kreis, T Stuffler, H Mosebach, Contamination Control on Submarines Technology Transfer from Space to Sub Sea, SAMAP 2003
- Solid amine CO₂ scrubber based on an primary amine exchange ion resin initially developed for spacecraft
- Trialed in Swedish submarine

United Technologies Company, USA has a similar system for spacecraft (Ben Bishop, Advanced Atmosphere Control Systems, SAMAP 2009) SAMAP 2015, Den Helder

Regenerative Solid Amine CO2 Scrubber Amine-Impregnated Silica

- USN Mesoporous silica nanoparticles, amine-impregnated (eg Polyethyleneimine, Propylamine[#]) <u>A</u>dvanced <u>C</u>arbon dioxide <u>R</u>emoval <u>U</u>nit – Granular Bed
- ([#]Z Bacsik, R Atluri, A E Garcia-Bennett and N Hedin, *Temperature-Induced Uptake of CO2 and Formation of Carbamates in Mesocaged Silica Modified with n-Propylamines*, Langmiur 26(12) 10013-10024 (2010).)
 - Advantages cf Liquid Amines
 - Low heat of regeneration
 - Low cost
 - Better containment
 - Disadvantages cf Liquid Amines
 - Low capacity although Ion Exchange Resin is of a similar capacity to MEA solution
 - High cost
 - Leaks

USN ACRU PROGRAM

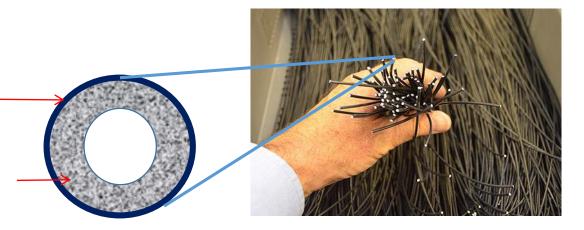
UTC Aerospace Systems, USA. (formerly Hamilton-Sundstrand)

- Technology demonstrator Done
- Full scale prototype Being tested
- Qualification 2016
- Production 2018/19

Absorption Media Tube (AMT) Technology Regenerative CO2 Removal

G Toft , QinetiQ, SAMAP 2013 Meso-porous Silica(MPS)/Polyethyleneimine (PEI) -Hollow Fibre :

1. Polysulfone/Zeolite


2. Polysulfone/MPS/PEI (Nano- Porous Solutions Ltd)

0.7% CO2

Desorption: Thermal/Vacuum

Conductive Carbon -Layer

- 1. Polysulfone Zeolite
- 2. Polysulfone MPS/PEI

CO₂ Removal: Cryogenics (France)

- AIP Submarine: MESMA (Module d'Energie Sous-Marine Autonome) Bry-Peel, Kerros, Rouzies, SAMAP 94
- Use of LOX heat exchanger to condense CO₂ (-170°C) to 0.7%
 - Also removes organic vapours including refrigerant gases
- Nuclear-Powered: DGA/L' Air Liquide: Pulse Tube Cryo-Cooler (-150°C) E Jouandon *et al,* SAMAP 2013
 - Can maintain CO₂ levels at <0.5%
 - Also removes organic vapours including refrigerant gases.
 - Currently
 - molecular sieve for CO₂ removal is replaced every 2 patrols and
 - charcoal filter is replaced twice during one patrol.
- These cryogenic systems reduce reliance on consumables, manpower and maintenance which is particularly important in nuclear-powered submarines where there is plentiful power and long missions..

Non-Regenerative CO2 Removal

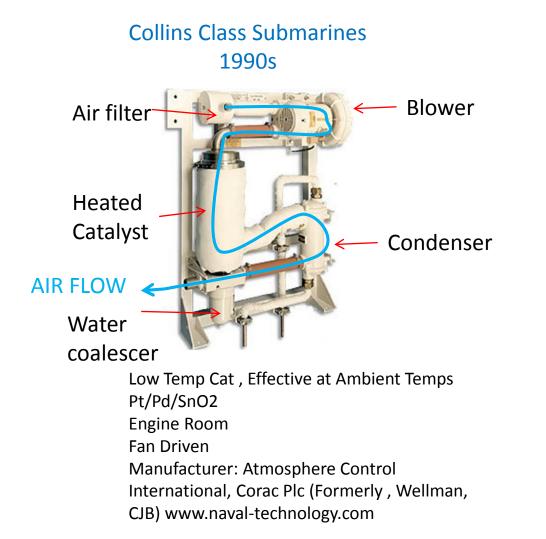
- Soda Lime
- Granules
 - Canisters
 - Curtains (Bartelle)
 - . -

Lithium Hydroxide Granules Canisters Curtains Sheets (Micropore)

Relocateable Soda Lime Canisters

CASPA (MP Plc) Self-Contained Batteries, Fan, Granules, Snow-storm filled – high packing density High Tech

DSTO Modification MP canister fitted with electronics cooling fan – Low Tech


CO/H₂ "Burner"

Oberon Class Submarines 1960s

Cat. in Ni mesh Satchets

Thermometer

Pd/Al2O3 Diffusion Electrically heated (60° - 120° C)

VOC Removal (Fuel Vapour, Material Off-Gassing)

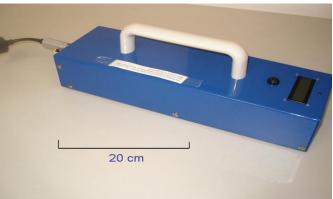
- Cryogenics DCN (France) Previously mentioned
 - MESMA
 - Pulse Tube cooling
- Gold Nanoclusters Marta Santiago^a, Zaira Blázquez^a, Edurne Galindo^a, Leonor Alves^b, Jordi Llorca^{b,c} and <u>Ernest Mendoza^{a,b}</u>, SAMAP 2013
 - Room Temp Removal (oxidation) : Formaldehyde, CO
- Pd/Al2O3, Pt/Pd/SnO2 (more active)
 - Designed for CO/H2 some Volatile Organic Compounds oxidized (eg. Ethanol, Toluene, Hexane, Acetone, Trichloroethane) *DeNola et al. SAMAP 2007.*

VOC Removal

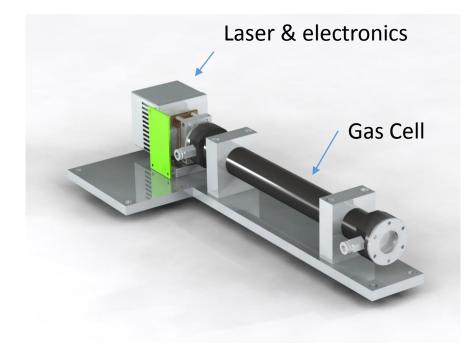
- Koala : Pelosi Italian Submarine, SAMAP 2003
- CO, SOx, NOx, VOCs, Particulates
- Filtration and electrostatic precipitation (?)
- 19 Units throughout the submarine
- 1. Mechanical Filter (HEPA ?),
- 2. Special Activated Carbon Filter, (1 kg, 30 days)
- 3. Ionic Filter (?)
- 4. Germicide Lamp (UV lamp ?),
- 5. Ionizer
- Small Units suitable for retro-fitting

AIR QUALITY MONITORING (Mazurek et al., SAMAP 2007)

- Submarine Escape Monitor
 - DSTO/Scottish Anglo (Analox) plc, 1994
 - Hanhela and Hook, DSTO
 - Replacement for Colorimetric tubes
 - Continuous monitoring of CO2 and O2
 - Pressure corrected (7 bar)
 - Portable
 - Battery Life 7 days.
 - Waterproof case
 - Shock resistant.


Analox and Anagas hyperbaric O2 and CO2 monitors (1990s)

Analox Escape monitor for O2, CO2


AIR QUALITY MONITORING CO

- Electrochemical detectors unsuitable due to interference with H₂
- IR detection
 - NDIR Bench-top only, for < 30 ppm, λ = 2.3/4.7 μ m
 - Tunable Diode Laser (Hanhela et al, SAMAP 2011) Southwest Sciences, Santa-Fe, NM
 - Battery powered, portable
 - Linear response 0-300 ppm CO
 - Sensitivity ±1 ppm, 0-30 ppm 15 day Submarine Trial
 - Multiple pass cell 9m
 - Inexpensive laser

AIR QUALITY MONITORING CO (IR, Cont.)

- Tunable Quantum Cascade Laser Analox/TDL Sensors V. Brown and R.J. Holdsworth, SAMAP 2009; Mark Elkin* and Mark Lewis⁺ SAMAP2013
- Bench top
 - Linear 10 200 ppm CO
 - Noise ± 1/4 ppm
 - $\lambda = 7.37 \,\mu m$ fundamental high abs
 - Expensive laser

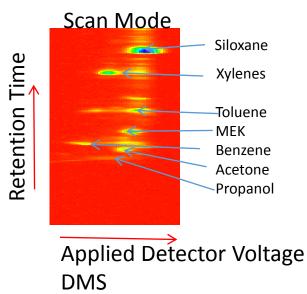
AIR QUALITY MONITORING CO (IR, Cont.)

- Los Gatos Research LGR's Off-Axis Integrated Cavity Output Spectroscopy (ICOS) (patented 2001): Cavity-Enhanced Absorption Technique, SAMAP 2009
- Cell: effective optical path length ~ 4 km
- Used in environmental studies high sensitivity
- CO (36 ppb), CO2, CH4, NH3, HCl

AIR QUALITY MONITORING ANITA FTIR Analysing Interferometer for Ambient Air

- T. Stuffler, H. Mosebach, D. Kampf, A. Honne, H. Odegard, H. Schumann-Olsen, G. Tan; SAMAP 2007
- detect and quantify quasi on—line and simultaneously <u>32 trace gases</u> with ppm or sub-ppm detection limits

Methanol, ethanol, 2-propanol, 1-butanol, formaldehyde , Acetaldehyde, propionaldehyde, butyraldehyde, toluene, m-xylene, o-xylene, p-xylene, ethyl benzene, ethyl acetate n-butyl acetate, dichloro methane, Freon 11, Freon 12, Halon 1301, Freon 113, perfluoro propane , n-hexane, acetone, 2-butanone, hexamethyl cyclo-trisiloxane octamethyl cyclo-tetrasiloxane, decamethyl cyclo-pentasiloxane, ammonia, carbon monoxide, methane, carbon dioxide, water

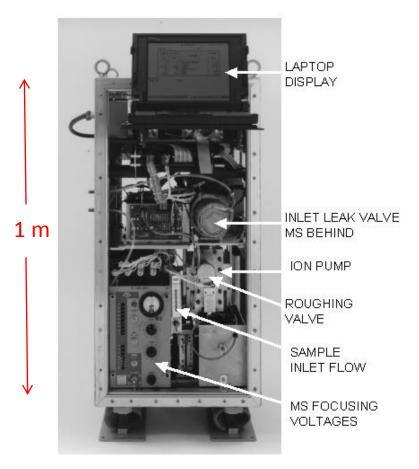


AIR QUALITY MONITORING SIONEX Micro GC

• Limero and Cheng "Potential for Measurement of Trace Volatile Organic Compounds in Closed Environments Using Gas Chromatograph/Differential Mobility Spectrometer", SAMAP 2007

- Features:
 - No consumables !
 - Std GC column
 - Air as Carrier Gas
 - Detectors:
 - Differential Mobility Spectrometer ,(ions undergo an oscillating radio frequency field where the difference in mobility between the high and low fields is measured)
 - Ion Mobility Spectrometer (time of flight of ions across a drift tube, in an electric field)
 - Coupled to a Laptop

AIR QUALITY MONITORING Femto Scan GC-IMS


- Based on the Graseby, Smiths Detection (<u>Chemical Agent Monitor</u>) the Femto Scan GC-IMS is similar to the Sionex
- 5m column fast GC

CAM

AIR QUALITY MONITORING Mini-CAMS

- M Koslin and RM Carson, SAMAP94
- Cut-down version of the CAMS II, designed for conventional submarines never sold
- Magnetically scanned singled focusing mass spectrometer.
 - ≤ 25 gases
 - Detection limit: 1ppm
 - Mass range: 1-160 amu
 - Accuracy: 5%
 - Precision: 3%
 - Time between calibrations, overhauls: >2 y

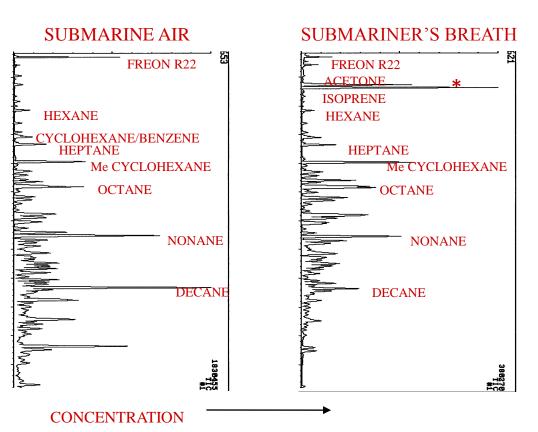
160 kg

AIR QUALITY MONITORING CAMS

- **1970s** CAMS Mark I: <u>single-focusing</u> magnetic sector mass spectrometer.
 - 8 gases including life gases and refrigerants
 - Mass range 2 -135 amu
 - Detection limit 10 ppm
- 1990s CAMS Mark II: <u>double-focusing</u> magnetic sector mass spectrometer with scanning capability..
 - ≤25 gases: life gases, refrigerants, aliphatic and aromatic hydrocarbons, and trace contaminants
 - Mass range 2-300 ppm
 - Detection Limit 1 ppm.
 - High maintenance cost
- 2012 CAMS IIA: single focusing magnetic sector analyzer, (Nui et al., SAMAP 2007)
 - ≤25 gases
 - Updated electronics
 - Simpler and cheaper than Mk II
 - Elimination of complex and difficult-to-manufacture components.

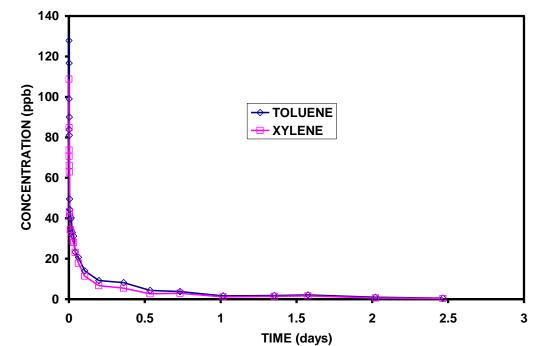
AIR QUALITY MONITORING Predecessors of CAMS I (1960s)

- Infrared Instruments (USN): for CO, Hydrocarbons, Refrigerants
 - Long path length cells (120 cm) to increase sensitivity
 - Pressure cells (7 atm) """"
- Gas Chromatograph, automated (USN, RN): for all gases
- All were unreliable with the exception of a Perkin-Elmer IR CO monitor
- Has anything changed ?


Bio-Monitoring

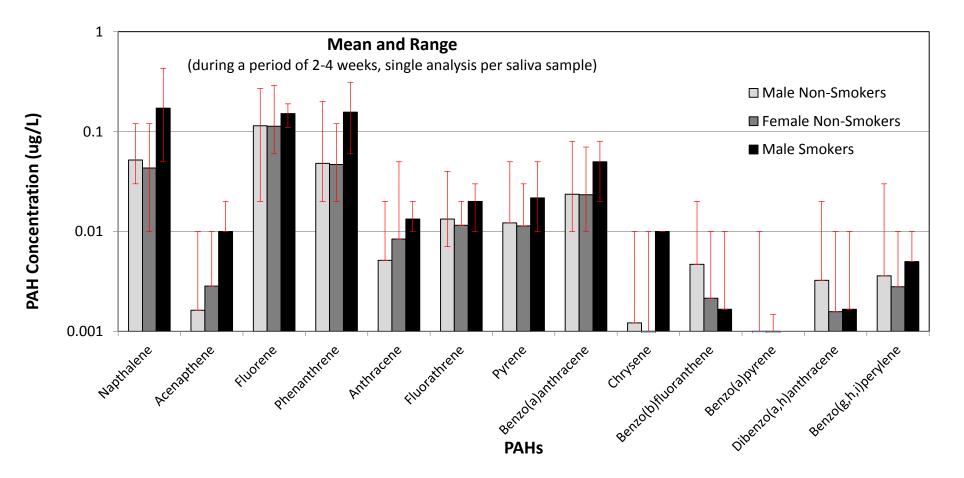
- The ultimate in exposure monitoring
 - Air quality monitoring only covers inhalation-not dermal or ingestion
 - Complementary to retrospective air monitoring
 - Needs to be non-invasive
 - Needs to be related to blood

Exhaled Breath


- Diesel Fuel Vapour Major submarine air contaminant
 - Exposure through:
 - Inhalation
 - Dermal
 - Breath samples collected dock-side
 - Analysed by GC-MS in the lab.
 - G. DeNola, P. J. Hanhela, T. –H. Gan and W. Mazurek , Submarine Atmosphere Program at DSTO, SAMAP 2007
 - G. DeNola, P. J. Hanhela, T. –H. Gan and W. Mazurek "Analysis of Volatile Organic Compounds in the Exhaled Breath of Submariners" Breath 2009, Dortmund, Germany.

Elimination of Hydrocarbons from Exhaled Breath

- Anecdotal evidence from submariners : diesel odour exudes from the body well after disembarkation
- Analysis of breath samples from a submariner over a period of 2.5 days showed a decay in hydrocarbon concentrations over this period.
- So what ?
- Significant improvement from Oberons to Collins submarines.
- Nitrile rubber gloves for mechanics.


SUBMARINE ODOUR

- The role of odour is undervalued in submarine air monitoring.
 - Air quality in submarines and everyday life if subjectively assessed by odour
 - You can have the best air quality but if there is a trace of odorous air contaminant no one will be convinced.
- Diesel powered submarines have a characteristic odour.
 - Diesel fuel vapor
 - Diesel fuel residue
 - > C6 aldehydes (typically C9) from cooking oil oxidation (aerosols and vapour)

LIMITATIONS OF EXHALED BREATH ANALYSES FOR EXPOSURE MONITORING

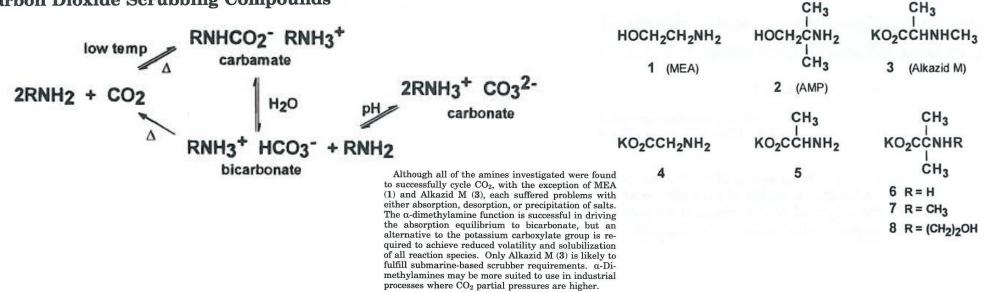
- Largely affected by short-term exposure
- Limited to volatile compounds
 - For semi-volatile compounds
 - Blood (traditional)
 - Urine parent compounds, metabolites (eg PAH exposure in Al smelting industry)
 - Saliva used for drug monitoring in pharmaceutical industry

SALIVA PAHS SMOKERS/NON-SMOKERS (Mazurek et al SAMAP 2013)

Exposure Regulations

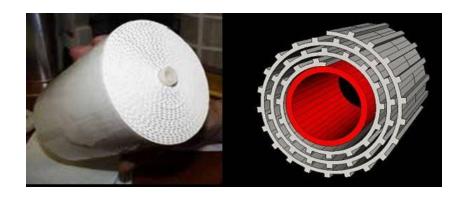
- Diesel Exhaust
 - 0.2 mg/m3, Diesel Particulate Matter, scheduled for 2006 (Gan and Mazurek, SAMAP 2003)
 - Implementation: MO LCDR Dr Jodie Bailey (2004)
- Fuel Vapour
 - Total Organics: 7.5 ppm (continuous exposure RN MPC90) 100 ppm reduced to 15 ppm Diesel Fuel ACIGH (2002)
- Smoking
 - Banned: Canada (Implementation MO LCDR Dr Debbie Pestell, SAMAP 2007)
 - Allowed: US, UK, France, Italy, Germany, Spain, Australia (discretion of CO)
- Carbon Dioxide
 - 0.5% Continuous Exposure, (close to the limit of existing technology) EC Limits
 - Importance of short-term fluctuations (J James, SAMAP 2013)

Thank you !


Regenerative CO₂ Scrubber (MEA) (MonoEthanolAmine)

- Installed on COLLINS class submarines
 - – adapted from RN nuclear-powered submarines

• Reaction Mechanisms – Robert Hook, DSTO Ind. Eng. Chem. Res. 1997, 36, 1779–1790


An Investigation of Some Sterically Hindered Amines as Potential Carbon Dioxide Scrubbing Compounds

